THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Максимально дифференциальный МДПИ-028

Максимально дифференциальный ДМД-70

Максимально дифференциальный ДМД-70-С

Автоматический биметаллический максимально-дифференциальный пожарный извещатель МДПИ-028 выполнен в водозащитном исполнении и предназначен для применения на судах. Конструктивно извещатель построен на двух биметаллических элементах, которые деформируются при повышении окружающей температуры и своими незакрепленными концами воздействуют на контакты. Каждый биметаллический элемент расположен

Автоматический биметаллический максимально-дифференциальный извещатель МДПИ-028 227 ел.

Тепловой максимально-дифференциальный МДПИ-028, чувствительным элементом явля-ются две бимегалляческие спирали. Срабатывает при темпера-type + 70° С (+90° С) .Контролируемая площадь - от 20 до 30 м2. Температура окружающей среды должиа быть от -40 до -f-50°C. Относительная влажность помещений не должна превышать 98%. Работает со станцией судовой пожарной сигнализации ТОЛ-10/50-С.

Извещатель МДПИ-028 (максимально-дифференциальный пожарный извещатель) в водозащитном исполнении предназначен для применения в помещениях с температурой воздуха-40... + 50° С и относительной влажностью до 98%. Извещагель приспособлен для работы в условиях вибрации.

На смену морально и технически устаревшим пожарным изве-щателям АТИМ, АТП, ДТЛ, ДИ-1, КИ-1, РИД-1, ИДФ-1, ИДФ-1М, ПОСТ-1 и приемно-контрольного оборудования СКПУ-1, СДПУ-1, ППКУ-1М, ТОЛ-10/100, РУОП-1 были разработаны и освоены новые модели современных пожарных извещателей и приемно-контрольных приборов со значительно лучшими эксплуатационными показателями долговечности, надежности и экономичности, выполненные на современной элементной базе широкого применения. К ним относились: радиоизотопный дымовой пожарный извещатель РИД-6М, фотоэлектрический дымовой извещатель ДИП-1, ДИП-2 и ДИП-3, световой пожарный извещатель ультрафиолетового излучения пламени ИП329-2 «Аметист», взрывозащищенный тепловой пожарный извещатель ИП-103, тепловой магнитоконтактный пожарный извещатель многократного действия ИП105-2/1 (ИТМ), ручной пожарный извещатель ИПР, максимально-дифференциальный извещатель ИП101-2, а также приемно-контрольные приборы ППС-3, ППК-2, РУГТИ-1, ППКУ-1М-01 и «Сигнал-42». Для защиты взрывопожароопасных производств разработан и передан в промышленное производство новый искро-безопасный приемно-контрольный прибор «Сигнал-44», рассчитанный на подключение к искробезопасному шлейфу сигнализации пожарных

Максимально-дифференциальный тепловой пожарный извещатель - тепловой пожарный извещатель, совмещающий функции максимального и дифференциального тепловых пожарных извещателей.

5 Извещатель тепловой ИП 129-1 Аналоговый максимально-дифференциальный тепловой извещатель
выми. Наиболее распространенные тепловые извещатели по принципу действия разделяются на максимальные, дифференциальные и максимально-дифференциальные. Первые срабатывают при достижении определенной температуры, вторые - при определенной скорости нарастания температуры, третьи - от любого превалирующего изменения температуры. По конструктивному исполнению тепловые извещатели бывают пассивные, в которых под воздействием температуры чувствительный элемент меняет свои свойства (ДТЛ, ИП-104-1 - максимального действия, основанные на размыкании пружинящих контактов, соединенных лег-коплаэким припоем: МДПТ-028 - максимально-дифференциальный на биметаллическом эффекте, приводящем к деформации пластин, размыкающих контакты; ИП-105-2/1 - на принципе изменения магнитной индукции под действием тепла; ДПС-38 -дифференциальный на применении термопарной термобатареи).

Тепловые извещатели по принципу действия разделяются на максимальные, дифференциальные и максимально-дифференциальные. Первые срабатывают при достижении определенной температуры, вторые - при определенной скорости нарастания температуры, а третьи - от любого значительного изменения температуры. В качестве чувствительных элементов применяют легкоплавкие замки, биметаллические пластины, трубки, заполненные легко расширяющейся жидкостью, термопары и т. д. Тепловые пожарные извещатели устанавливают под потолком в таком положении, чтобы тепловой поток, обтекая чувствительный элемент извещателя, нагревал его. Тепловые пожарные извещатели не обладают высокой чувствительностью, поэтому обычно не дают ложных сигналов срабатывания в случае увеличения температуры в помещении при включении отопления, выполнения технологических операций.

Тепловые или термоизвещатели подразделяются на максимальные, дифференциальные и максимально-дифференциальные.

Максимально-дифференциальные извещатели являются комбинированными, т. е. работающими одновременно и при определенной скорости нарастания температур и при достижении критических температур воздуха в помещении.

Тепловые извещатели по принципу действия подразделяются на максимальные, дифференциальные и максимально-дифференциальные.

Дифференциальные термоизвещатели срабатывают при определенной скорости нарастания температуры окружающей среды, которую принимают в пределах 5-МО°С в 1 мин. Максимально-дифференциальные извещатели объединяют свойства извещателей максимального и дифференциального типов.

Тепловые извещатели по принципу действия подразделяются на максимальные, дифференциальные и максимально-дифференциальные.

Тепловые автоматические пожарные извещатели разделяют по принципу действия на максимальные, дифференциальные и максимально-дифференциальные. Извещатели максимального принципа действия срабатывают при достижении определенного значения температуры, дифференциального - при определенной скорости нарастания градиента температуры, максимально-дифференциаль-

Тепловые максимально-дифференциальные извещатели не следует применять в следующих случаях: скорость изменения температуры окружающего воздуха больше градиента температуры срабатывания извещателя (цехи, закаливания, котельные и т. д.); имеется сырая пыль (концентрация пыли больше допустимой по санитарным нормам).

Пожарные извещатели дымовые 215 дымовые оптические 217 линейно-объемные 221 максимально-дифференциальные

ОУ характеризуются усилительными, входными, выходными, энергетическими, дрейфовыми, частотными и скоростными характеристиками.

Усилительные характеристики

Коэффициент усиления (K U) равен отношению приращения выходного напряжения к вызвавшему это приращение дифференциальному входному напряжению при отсутствии обратной связи (ОС). Он изменяется в пределах от 10 3 до 10 6 .

Важнейшими характеристиками ОУ являются амплитудные (передаточные) характеристики (рис. 8.4). Их представляют в виде двух кривых, относящихся соответственно к инвертирующему и неинвертирующему входам. Характеристики снимают при подаче сигнала на один из входов при нулевом сигнале на другом. Каждая из кривых состоит из горизонтального и наклонного участков.

Горизонтальные участки кривых соответствуют режиму полностью открытого (насыщенного), либо закрытого транзисторов выходного каскада. При изменении входного напряжения на этих участках выходное напряжение усилителя остается постоянным и определяется напряжениями +U вых max) -U вых max . Эти напряжения близки к напряжению источников питания.

Наклонному (линейному) участку кривых соответствует пропорциональная зависимость выходного напряжения от входного. Этот диапазон называется областью усиления. Угол наклона участка определяется коэффициентом усиления ОУ:

K U = U вых / U вх.

Большие значения коэффициента усиления ОУ позволяют при охвате таких усилителей глубокой отрицательной обратной связью получать схемы со свойствами, которые зависят только от параметров цепи отрицательной обратной связи.

Амплитудные характеристики (см. рис. 8.4), проходят через нуль. Состояние, когда U вых = 0 при U вх = 0,называется балансом ОУ. Однако для реальных ОУ условие баланса обычно не выполняется. При U вх = 0 выходное напряжение ОУ может быть больше или меньше нуля:

U вых = + U вых или U вых = — U вых).

Дрейфовые характеристики

Напряжение (U смо), при котором U вых = 0, называется входным напряжением смещения нуля (рис. 8.5). Оно определяется значением напряжения, которое необходимо подавать на вход ОУ для получения нуля на выходе ОУ. Обычно составляет не более единиц милливольт. Напряжения U смо и ∆U вых (∆U вых = U сдв — напряжение сдвига) связаны соотношением:

U смо = ∆U вых / К U .

Основной причиной появления напряжения смещения является существенный разброс параметров элементов дифференциального усилительного каскада.

Зависимость параметров ОУ от температуры вызывает температурный дрейф входного напряжения смещения. Дрейф входного напряжения смещения – это отношение изменения входного напряжения смещения к изменению окружающей температуры:

E смо = U смо / Т.

Обычно E смо составляет 1…5 мкВ / °С.

Передаточная характеристика ОУ для синфазного сигнала показана на (рис. 8.6). Из него видно, что при достаточно больших значениях U сф (соизмеримых с напряжением источника питания) коэффициент усиления синфазного сигнала (К сф) резко возрастает.

Используемый диапазон входного напряжения называется областью ослабления синфазного сигнала. Операционные усилители характеризуется коэффициентом ослабления синфазного сигнала (К осс)отношением коэффициента усиления дифференциального сигнала (К u д) к коэффициенту усиления синфазного сигнала (К u сф).

К осс = К u д / К u сф.

Коэффициент усиления синфазного сигнала определяется как отношение изменения выходного напряжения к вызвавшему его изменению синфазног
о входного сигнала). Коэффициент ослабления синфазного сигнала обычно выражается в децибелах.

Входные характеристики

Входное сопротивление, входные токи смещения, разность и дрейф входных токов смещения, а также максимальное входное дифференциальное напряжение характеризуют основные параметры входных цепей ОУ, которые зависят от схемы используемого дифференциального входного каскада.

Входной ток смещения (I см) – ток на входах усилителя. Входные токи смещения обусловлены базовыми токами входных биполярных транзисторов и токами утечки затворов для ОУ с полевыми транзисторами на входе. Другими словами, I см – это токи, потребляемые входами ОУ. Они обуславливается конечным значением входного сопротивления дифференциального каскада. Входной ток смещения (I см), приводимый в справочных данных на ОУ, определяется как средний ток смещения:

I см = (I см1 – I см2) / 2.

Входной ток сдвига – это разность токов смещения. Он появляется вследствие неточного согласования коэффициентов усиления по току входных транзисторов. Ток сдвига является переменной величиной, лежащей в диапазоне от нескольких единиц до нескольких сотен наноампер.

Вследствие наличия входного напряжения смещения и входных токов смещения схемы ОУ приходится дополнять элементами, предназначенными для начальной их балансировки. Балансировка осуществляется подачей на один из входов ОУ некоторого дополнительного напряжения и введения резисторов в его входные цепи.

Температурный дрейф входного тока коэффициент, равный отношению максимального изменения входного тока ОУ к вызвавшему его изменению окружающей температуры.

Температурный дрейф входных токов приводит к дополнительной погрешности. Температурные дрейфы важны для прецизионных усилителей, так как, в отличии от напряжения смещения и входных токов, их очень сложно скомпенсировать

Максимальным дифференциальным входным напряжением лимитируется напряжение, подаваемое между входами ОУ в схеме, для исключения повреждения транзисторов дифференциального каскада

Входное сопротивление зависит от типа входного сигнала. Различают:

· дифференциальное входное сопротивление (R вх диф) – (сопротивление между входами усилителя);

· синфазное входное сопротивление (R вх сф) – сопротивление между объединенными входными выводами и общей точкой.

Значения R вх диф лежат в интервале от нескольких десятков килоом до сотен мегаом. Входное синфазное сопротивление R вх сф на несколько порядков больше R вх диф.

Выходные характеристики

Выходными параметрами ОУ являются выходное сопротивление, а также максимальное выходное напряжение и ток.

Операционный усилитель должен обладать малым выходным сопротивлением (R вых) для обеспечения высоких значений напряжения на выходе при малых сопротивлениях нагрузки. Малое выходное сопротивление достигается применением на выходе ОУ эмиттерного повторителя. Реальное R вых составляет единицы и сотни ом.

Максимальное выходное напряжение (положительное или отрицательное) близко к напряжению питания. Максимальный выходной ток ограничивается допустимым коллекторным током выходного каскада ОУ.

Энергетические характеристики

Энергетические параметры ОУ оценивают максимальными потребляемыми токами от обоих источников питания и соответственно суммарной потребляемой мощностью .

Частотные характеристики

Усиление гармонических сигналов характеризуется частотными параметрами ОУ, а усиление импульсных сигналов – его скоростными или динамическими параметрами.

Частотная зависимость коэффициента усиления ОУ без обратной связи называется амплитудно-частотной характеристикой (АЧХ).

Частота (f 1), при которой коэффициент усиления ОУ равен единице, называется частотой единичного усиления .

Вследствие создаваемого усилителем в области высоких частот фазового сдвига выходного сигнала относительно входного фазо-частотная характеристика ОУ по инвертирующему входу приобретает дополнительный (сверх 180°) фазовый сдвиг (рис. 8.8).

Для обеспечения устойчивой работы ОУ необходимо уменьшать запаздывание по фазе, т.е. корректировать амплитудно-частотную характеристику ОУ.

Скоростные характеристики

Динамическими параметрами ОУ являются скорость нарастания выходного напряжения (скорость отклика) и время установления выходного напряжения . Они определяются по реакции ОУ на воздействие скачка напряжения на входе (рис. 8.9).

Скорость нарастания выходного напряжения – это отношение приращения ( U вых) к интервалу времени ( t), за который происходит это приращение при подаче на вход прямоугольного импульса. То есть

V U вых = U вых / t

Чем выше частота среза, тем больше скорость нарастания выходного напряжения. Типовые значенияV U вых единицы вольт на микросекунды.

Время установления выходного напряжения (t уст) – время, в течение которого U вых операционного усилителя изменяется от уровня 0,1 до уровня 0,9 установившегося значения U вых при воздействии на вход ОУ прямоугольных импульсов. Время установления обратно пропорционально частоте среза.

(differential pressure): Разница между давлением на входе и выходе испытуемого компонента в заданных условиях.

11 gaslift differential pressure

12 bottomhole differential pressure

13 differential pressure switch

14 differential pressure gage


Рис. 2.23

а - схема привода стрелки;
1 - «плюсовый» сильфон;
2 - «минусовый» сильфон;
3 - шток;
4 - рычаг;
5 - торсионный вывод;
7 - компенсатор;
8 - плоскостный клапан;
9 - основание;
10 и 11 - крышки;
12 - подводящий штуцер;
13 - манжета;
14 - дросселирующий канал;
15 - клапан;
16 - рычажная система;
18 - стрелка;
19 - регулировочный винт;
20 - натяжная пружина;
21 - пробка;





Рис. 2.24

1 - мембранная коробка;

4 - корпус;
5 - передаточный механизм;
6 - стрелка;
7 - цифербла




Рис. 2.25


1 - «плюсовая» камера;
2 - «минусовая» камера;
4 - передающий шток;
5 - передаточный механизм;


Рис. 2.26

1 - «плюсовая» камера;
2 - «минусовая» камера;
3 - входной блок;
5 - толкатель;
6 - сектор;
7 - трибка;
8 - стрелка;
9 - циферблат;
10 - разделительный сильфон


Рис. 2.27

1 - «плюсовая» камера;
2 - «минусовая» камера;
3 - передающий шток;
4 - сектор;
5 - трибка;
6 - коромысло


Рис. 2.28.

1 - поворотный магнит;
2 - стрелка;
3 - корпус;
4 - магнитный поршень;
6 - рабочий канал;
7 - пробка;
8 - диапазонная пружина;
9 - блок электроконтактов





1 и 2 - держатели;
3 и 4 - трубчатые пружины;
5 и 8 - трибки;

Тематики

Синонимы

EN

DE

FR

  • 15 differential pressure indicator

    Малые значения дифференциального давления могут измеряться приборами на основе мембран и сильфонов.
    Манометры дифференциальные сильфонные показывающие типа ДСП-160 нашли широкое применение на территории СНГ. Принцип их действия основан на деформации двух автономных сильфонных блоков, находящихся под воздействием «плюсового» и «минусового» давления. Эти деформации преобразовываются в перемещение указательной стрелки прибора. Перемещение стрелки осуществляется до установления равновесия между «плюсовым» сильфоном, с одной стороны, и «минусовым» и цилиндрической пружиной - с другой.

    Рис. 2.23

    Дифференциальный сильфонный манометр:

    а - схема привода стрелки;
    б - блок первичного преобразования;
    1 - «плюсовый» сильфон;
    2 - «минусовый» сильфон;
    3 - шток;
    4 - рычаг;
    5 - торсионный вывод;
    6 - цилиндрическая пружина;
    7 - компенсатор;
    8 - плоскостный клапан;
    9 - основание;
    10 и 11 - крышки;
    12 - подводящий штуцер;
    13 - манжета;
    14 - дросселирующий канал;
    15 - клапан;
    16 - рычажная система;
    17 - трибко-секторный механизм;
    18 - стрелка;
    19 - регулировочный винт;
    20 - натяжная пружина;
    21 - пробка;
    22 - уплотнительное резиновое кольцо

    «Плюсовый» 1 и «минусовый» 2 сильфоны (рис. Рис. 2.23, б) соединены между собой штоком 3, функционально связанным с рычагом 4, который, в свою очередь, неподвижно закреплен на оси торсионного вывода 5. К концу штока на выходе «минусового» сильфона присоединена цилиндрическая пружина 6, закрепленная нижним основанием на компенсаторе 7 и работающая на растяжение. Каждому номинальному перепаду давления соответствует определенная пружина.

    «Плюсовый» сильфон состоит из двух частей. Его первая часть (компенсатор 7, состоящий из трех дополнительных гофр и плоскостных клапанов 8) предназначена для уменьшения температурной погрешности прибора из-за изменения объема жидкости-наполнителя, обусловленного варьированием температуры окружающего воздуха. При изменении температуры окружающей среды и соответственно рабочей жидкости ее увеличивающийся объем перетекает через плоскостный клапан во внутреннюю полость сильфонов. Вторая часть «плюсового» сильфона рабочая и идентична по конструкции «минусовому» сильфону.

    «Плюсовый» и «минусовый» сильфоны присоединены к основанию 9, на котором установлены крышки 10 и 11, образующие вместе с сильфонами «плюсовую» и «минусовую» камеры с соответствующими подводящими штуцерами 12 давления р + и р

    Внутренние объемы сильфонов, так же как и внутренняя полость основания 9, заполняются: жидкостью ПМС-5 для обычного и коррозионно-стойкого исполнений; составом ПЭФ-703110 - в кислородном варианте; дистиллированной водой - в варианте для пищевой промышленности и жидкостью ПМС-20 - для газового исполнения.

    В конструкциях дифманометров, предназначенных для измерения давления газа, на шток одета манжета 13, движение среды организовано через дросселирующий канал 14. Регулированием размера проходного канала с помощью клапана 15 обеспечивается степень демпфирования измеряемого параметра.

    Дифманометр работает следующим образом. Среды «плюсового» и «минусового» давления поступают через подводящие штуцеры в «плюсовую» и «минусовую» камеры соответственно. «Плюсовое» давление в большей степени воздействует на сильфон 1, сжимая его. Это приводит к перетоку находящейся внутри жидкости в «минусовый» сильфон, который растягивается и разжимает цилиндрическую пружину. Такая динамика происходит до уравновешивания сил взаимодействия между «плюсовым» сильфоном и парой - «минусовый» сильфон - цилиндрическая пружина. Мерой деформации сильфонов и их упругого взаимодействия служит перемещение штока, которое передается на рычаг и соответственно на ось торсионного вывода. На этой оси (рис. 2.23,а) закреплена рычажная система 16, обеспечивающая передачу вращения оси торсионного вывода к трибко-секторному механизму 17 и стрелке 18. Таким образом, воздействие на один из сильфонов приводит к угловому перемещению оси торсионного вывода и затем к повороту указательной стрелки прибора.
    Регулировочным винтом 19 с помощью натяжной пружины 20 производится корректировка нулевой точки прибора.

    Пробки 21 предназначены для продувки импульсных линий, промывки измерительных полостей сильфонного блока, слива рабочей среды, заполнения измерительных полостей разделительной жидкостью при вводе прибора в работу.
    При односторонней перегрузке одной из камер происходит сжатие сильфона и перемещение штока. Клапан в виде уплотнительного резинового кольца 22 садится в гнездо основания, перекрывает переток жидкости из внутренней полости сильфона, и таким образом предотвращается его необратимая деформация. При непродолжительных перегрузках разность «плюсового» и «минусового» давления на сильфонный блок может достигать 25 МПа, а в отдельных типах приборов не превышать 32 МПа.
    прибор может выпускаться как в общетеническом, так и в аммиачном (А), кислородном (К), коррозионно-стойком-пищевом (Пп) исполнениях.


    Рис. 2.24

    Показывающий дифференциальный манометр на основе мембранной коробки:

    1 - мембранная коробка;
    2 - держатель «плюсового» давления;
    3 - держатель «минусового» давления;
    4 - корпус;
    5 - передаточный механизм;
    6 - стрелка;
    7 - цифербла

    Достаточно широкое распространение получили приборы на основе мембран и мембранных коробок . В одном из вариантов (рис. 2.24) мембранная коробка 1, внутрь которой через подводящий штуцер держателя 2 поступает «плюсовое» давление, является чувствительным элементом дифманометра. Под воздействием этого давления смещается подвижный центр мембранной коробки.
    «Минусовое» давление через подводящий штуцер держателя 3 подается внутрь герметичного корпуса 4 прибора и воздействует на мембранную коробку снаружи, создавая противодействие перемещению ее подвижного центра. Таким образом «плюсовое» и «минусовое» давления уравновешивают друг друга, а перемещение подвижного центра мембранной коробки свидетельствует о величине разностного - дифференциального давления. Этот сдвиг через передаточный механизм передается на указательную стрелку 6, которая на шкале циферблата 7 показывает измеряемое дифференциальное давление.
    Диапазон измеряемого давления определяется свойствами мембран и ограничивается, как правило, в пределах от 0 до 0,4…40 кПа. При этом класс точности может составлять 1,5; 1,0; 0,6; 0,4, а в некоторых приборах 0,25.

    Обязательная конструктивная герметичность корпуса определяет высокую защищенность от внешних воздействий и определяется в основном уровнем IP66.

    В качестве материала для чувствительных элементов приборов используется бериллиевая и другие бронзы, а также нержавеющая сталь, для штуцеров, передаточных механизмов - медные сплавы, коррозионно-стойкие сплавы, включая нержавеющую сталь.
    Приборы могут изготавливаться в корпусах малых (63 мм), средних (100 мм), и больших (160 мм) диаметров.

    Мембранные показывающие дифференциальные манометры, как и приборы с мембранными коробками, используются для измерения малых значений дифференциального давления. Отличительная особенность - устойчивая работа при высоком статическом давлении.


    Рис. 2.25

    Мембранные показывающие дифференциальные манометры с вертикальной мембраной:

    1 - «плюсовая» камера;
    2 - «минусовая» камера;
    3 - чувствительная гофрированная мембрана;
    4 - передающий шток;
    5 - передаточный механизм;
    6 - предохранительный клапан

    Дифманометр с вертикальной мембраной (Рис. 2.25) состоит из «плюсовой» 1 и «минусовой» 2 рабочих камер, разделенных чувствительной гофрированной мембраной 3. Под воздействием давления мембрана деформируется, в результате чего перемещается ее центр вместе с закрепленным на нем передающим штоком 4. Линейное смещение штока в передаточном механизме 5 преобразуется в осевое вращение трибки, и соответственно указательной стрелки, отсчитывающей на шкале прибора измеряемое давление.

    Для сохранения работоспособности чувствительной гофрированной мембраны при превышении максимального допустимого статического давления предусмотрен открывающийся предохранительный клапан 6. Причем конструкции этих клапанов могут быть различны. Соответственно такие приборы не могут использоваться, когда не допускается контакт сред из «плюсовой» и «минусовой» камер.


    Рис. 2.26

    Мембранный показывающий дифференциальный манометр с горизонтальной мембраной:

    1 - «плюсовая» камера;
    2 - «минусовая» камера;
    3 - входной блок;
    4 - чувствительная гофрированная мембрана;
    5 - толкатель;
    6 - сектор;
    7 - трибка;
    8 - стрелка;
    9 - циферблат;
    10 - разделительный сильфон

    Дифманометр с горизонтальной чувствительной мембраной показан на рис. 2.26. Входной блок 3 состоит из двух частей, между которыми устанавливается гофрированная мембрана 4. В ее центре закреплен толкатель 5, передающий перемещение от мембраны, через сектор 6, трибку 7 к стрелке 8. В этом передаточном звене линейное перемещение толкателя преобразуется в осевое вращение стрелки 8, отслеживающей на шкале циферблата 9 измеряемое давление. В этой конструкции применена сильфонная система вывода толкателя из зоны рабочего давления. Разделительный сильфон 10 своим основанием герметично закрепляется на центре чувствительной мембраны, а верхней частью также герметично прикрепляется к входному блоку. Такая конструкция исключает контакт измеряемой и окружающей сред.
    Конструкция входного блока предусматривает возможность промывки или продувки «плюсовой» и «минусовой» камер и обеспечивает применение таких приборов для работы даже в условиях загрязненных рабочих сред.


    Рис. 2.27

    Мембранный двухкамерный показывающий дифманометр:

    1 - «плюсовая» камера;
    2 - «минусовая» камера;
    3 - передающий шток;
    4 - сектор;
    5 - трибка;
    6 - коромысло

    Двухкамерная система измерения дифференциального давления применена в конструкции прибора, показанного на рис. 2.27. Измеряемые потоки среды направляются в «плюсовую» 1 и «минусовую» 2 рабочие камеры, основными функциональными элементами которых являются автономные чувствительные мембраны. Преобладание одного давления над другим приводит к линейному перемещению передающего штока 3, которое через коромысло 6 передается соответственно на сектор 4, трибку 5 и систему стрелочной индикации измеряемого параметра.
    Дифманометры с двухкамерной системой измерения используются для измерения малых дифференциальных давлений при высоких статических нагрузках, вязких сред и сред с твердыми вкраплениями.


    Рис. 2.28.

    Дифманометр с магнитным преобразователем:

    1 - поворотный магнит;
    2 - стрелка;
    3 - корпус;
    4 - магнитный поршень;
    5 - фторопластовый сальник;
    6 - рабочий канал;
    7 - пробка;
    8 - диапазонная пружина;
    9 - блок электроконтактов

    Принципиально иной показывающий дифманометр изображен на рис. 2.28. Поворотный магнит 1, на торце которого установлена стрелка 2, размещен в корпусе 3, выполненном из немагнитного металла. Магнитный поршень, уплотненный фторопластовым сальником 5, может передвигаться в рабочем канале 6. Магнитный поршень 4 со стороны «минусового» давления подпирает пробка 7, в свою очередь поджимаемая диапазонной пружиной 8.
    Среда «плюсового» давления через соответствующий подводящий штуцер воздействует на магнитный поршень и сдвигает его вместе с пробкой 7 по каналу 6 до уравновешивания такого смещения противодействующими силами - «минусовым» давлением и диапазонной пружиной. Движение магнитного поршня приводит к осевому вращению поворотного магнита и соответственно указательной стрелки. Такой сдвиг пропорционален перемещению стрелки. Полное согласование достигается подбором упругих характеристик диапазонной пружины.
    В дифманометре с магнитным преобразователем предусмотрен блок 9, замыкающий и размыкающий соответствующие контакты при прохождении вблизи его магнитного поршня.

    Приборы с магнитным преобразователем устойчивы к воздействию статического давления (до 10 МПа). Они обеспечивают относительно невысокую погрешность (примерно 2 %) в диапазоне функционирования до 0,4 Мпа и используются для измерения давления воздуха, газов, различных жидкостей.


    Показывающий дифференциальный манометр на основе трубчатой пружины

    1 и 2 - держатели;
    3 и 4 - трубчатые пружины;
    5 и 8 - трибки;
    6 - стрелка «плюсового» давления;
    7 и 9 - шкалы избыточного давления;
    10 - стрелка «минусового» давления

    В приборах такого типа на автономных держателях 1 и 2, соединенных вместе, установлены трубчатые пружины. Каждый держатель вместе с трубчатым чувствительным элементом образовывают автономные измерительные каналы. Среда «плюсового» давления поступает через входной штуцер держателя 2 в трубку 4, деформирует ее овал, в результате чего перемещается наконечник трубки и это перемещение через соответствующий зубчатый сектор передается на трибку 5. Эта трибка соответственно приводит к отклонению указательной стрелки 6, которая показывает на шкале 7 значение «плюсового» избыточного давления.

    «Минусовое» давление посредством держателя 1, трубчатой пружины 3, трибки 8 приводит к перемещению циферблата 9, объединенного со стрелкой 10, которая на шкале 7 отслеживает значение измеряемого параметра.

    Дифференциальные манометры (далее - дифманометры), как отмечалось в п.1.3, являются названием отнесенным в нашей стране к показывающим приборам. (Устройства, обеспечивающие электрический выходной сигнал, пропорциональный измеряемому дифференциальному давлению имеют название измерительных преобразователей разности давлений). Хотя отдельные производители, а также некоторые специалисты-эксплуатанционщики измерительные преобразователи разности давлений также называют дифманометрами.

    Дифманометры нашли основное применение в технологических процессах для измерения, контроля, регистрации и регулирования следующих параметров:

    · расхода различных жидких, газообразных и парообразных сред по перепаду давления на разного рода сужающих устройствах (стандартных диафрагмах, соплах, включая сопла Вентури) и дополнительно вводимых в поток гидро- и аэродинамических сопротивлениях, например на преобразователях типа Annubar или на нестандартных гидро- и аэродинамических препятствиях;

    · перепада - разности давления, вакуумметрических, избыточных, в двух точках технологического цикла, включая потери на фильтрах систем вентиляции и кондиционирования воздуха;

    · уровня жидких сред по величине гидростатического столба.

    Тематики

    Синонимы

    EN

    DE

    FR

  • 16 differential-pressure gage

    Малые значения дифференциального давления могут измеряться приборами на основе мембран и сильфонов.
    Манометры дифференциальные сильфонные показывающие типа ДСП-160 нашли широкое применение на территории СНГ. Принцип их действия основан на деформации двух автономных сильфонных блоков, находящихся под воздействием «плюсового» и «минусового» давления. Эти деформации преобразовываются в перемещение указательной стрелки прибора. Перемещение стрелки осуществляется до установления равновесия между «плюсовым» сильфоном, с одной стороны, и «минусовым» и цилиндрической пружиной - с другой.

    Рис. 2.23

    Дифференциальный сильфонный манометр:

    а - схема привода стрелки;
    б - блок первичного преобразования;
    1 - «плюсовый» сильфон;
    2 - «минусовый» сильфон;
    3 - шток;
    4 - рычаг;
    5 - торсионный вывод;
    6 - цилиндрическая пружина;
    7 - компенсатор;
    8 - плоскостный клапан;
    9 - основание;
    10 и 11 - крышки;
    12 - подводящий штуцер;
    13 - манжета;
    14 - дросселирующий канал;
    15 - клапан;
    16 - рычажная система;
    17 - трибко-секторный механизм;
    18 - стрелка;
    19 - регулировочный винт;
    20 - натяжная пружина;
    21 - пробка;
    22 - уплотнительное резиновое кольцо

    «Плюсовый» 1 и «минусовый» 2 сильфоны (рис. Рис. 2.23, б) соединены между собой штоком 3, функционально связанным с рычагом 4, который, в свою очередь, неподвижно закреплен на оси торсионного вывода 5. К концу штока на выходе «минусового» сильфона присоединена цилиндрическая пружина 6, закрепленная нижним основанием на компенсаторе 7 и работающая на растяжение. Каждому номинальному перепаду давления соответствует определенная пружина.

    «Плюсовый» сильфон состоит из двух частей. Его первая часть (компенсатор 7, состоящий из трех дополнительных гофр и плоскостных клапанов 8) предназначена для уменьшения температурной погрешности прибора из-за изменения объема жидкости-наполнителя, обусловленного варьированием температуры окружающего воздуха. При изменении температуры окружающей среды и соответственно рабочей жидкости ее увеличивающийся объем перетекает через плоскостный клапан во внутреннюю полость сильфонов. Вторая часть «плюсового» сильфона рабочая и идентична по конструкции «минусовому» сильфону.

    «Плюсовый» и «минусовый» сильфоны присоединены к основанию 9, на котором установлены крышки 10 и 11, образующие вместе с сильфонами «плюсовую» и «минусовую» камеры с соответствующими подводящими штуцерами 12 давления р + и р

    Внутренние объемы сильфонов, так же как и внутренняя полость основания 9, заполняются: жидкостью ПМС-5 для обычного и коррозионно-стойкого исполнений; составом ПЭФ-703110 - в кислородном варианте; дистиллированной водой - в варианте для пищевой промышленности и жидкостью ПМС-20 - для газового исполнения.

    В конструкциях дифманометров, предназначенных для измерения давления газа, на шток одета манжета 13, движение среды организовано через дросселирующий канал 14. Регулированием размера проходного канала с помощью клапана 15 обеспечивается степень демпфирования измеряемого параметра.

    Дифманометр работает следующим образом. Среды «плюсового» и «минусового» давления поступают через подводящие штуцеры в «плюсовую» и «минусовую» камеры соответственно. «Плюсовое» давление в большей степени воздействует на сильфон 1, сжимая его. Это приводит к перетоку находящейся внутри жидкости в «минусовый» сильфон, который растягивается и разжимает цилиндрическую пружину. Такая динамика происходит до уравновешивания сил взаимодействия между «плюсовым» сильфоном и парой - «минусовый» сильфон - цилиндрическая пружина. Мерой деформации сильфонов и их упругого взаимодействия служит перемещение штока, которое передается на рычаг и соответственно на ось торсионного вывода. На этой оси (рис. 2.23,а) закреплена рычажная система 16, обеспечивающая передачу вращения оси торсионного вывода к трибко-секторному механизму 17 и стрелке 18. Таким образом, воздействие на один из сильфонов приводит к угловому перемещению оси торсионного вывода и затем к повороту указательной стрелки прибора.
    Регулировочным винтом 19 с помощью натяжной пружины 20 производится корректировка нулевой точки прибора.

    Пробки 21 предназначены для продувки импульсных линий, промывки измерительных полостей сильфонного блока, слива рабочей среды, заполнения измерительных полостей разделительной жидкостью при вводе прибора в работу.
    При односторонней перегрузке одной из камер происходит сжатие сильфона и перемещение штока. Клапан в виде уплотнительного резинового кольца 22 садится в гнездо основания, перекрывает переток жидкости из внутренней полости сильфона, и таким образом предотвращается его необратимая деформация. При непродолжительных перегрузках разность «плюсового» и «минусового» давления на сильфонный блок может достигать 25 МПа, а в отдельных типах приборов не превышать 32 МПа.
    прибор может выпускаться как в общетеническом, так и в аммиачном (А), кислородном (К), коррозионно-стойком-пищевом (Пп) исполнениях.


    Рис. 2.24

    Показывающий дифференциальный манометр на основе мембранной коробки:

    1 - мембранная коробка;
    2 - держатель «плюсового» давления;
    3 - держатель «минусового» давления;
    4 - корпус;
    5 - передаточный механизм;
    6 - стрелка;
    7 - цифербла

    Достаточно широкое распространение получили приборы на основе мембран и мембранных коробок . В одном из вариантов (рис. 2.24) мембранная коробка 1, внутрь которой через подводящий штуцер держателя 2 поступает «плюсовое» давление, является чувствительным элементом дифманометра. Под воздействием этого давления смещается подвижный центр мембранной коробки.
    «Минусовое» давление через подводящий штуцер держателя 3 подается внутрь герметичного корпуса 4 прибора и воздействует на мембранную коробку снаружи, создавая противодействие перемещению ее подвижного центра. Таким образом «плюсовое» и «минусовое» давления уравновешивают друг друга, а перемещение подвижного центра мембранной коробки свидетельствует о величине разностного - дифференциального давления. Этот сдвиг через передаточный механизм передается на указательную стрелку 6, которая на шкале циферблата 7 показывает измеряемое дифференциальное давление.
    Диапазон измеряемого давления определяется свойствами мембран и ограничивается, как правило, в пределах от 0 до 0,4…40 кПа. При этом класс точности может составлять 1,5; 1,0; 0,6; 0,4, а в некоторых приборах 0,25.

    Обязательная конструктивная герметичность корпуса определяет высокую защищенность от внешних воздействий и определяется в основном уровнем IP66.

    В качестве материала для чувствительных элементов приборов используется бериллиевая и другие бронзы, а также нержавеющая сталь, для штуцеров, передаточных механизмов - медные сплавы, коррозионно-стойкие сплавы, включая нержавеющую сталь.
    Приборы могут изготавливаться в корпусах малых (63 мм), средних (100 мм), и больших (160 мм) диаметров.

    Мембранные показывающие дифференциальные манометры, как и приборы с мембранными коробками, используются для измерения малых значений дифференциального давления. Отличительная особенность - устойчивая работа при высоком статическом давлении.


    Рис. 2.25

    Мембранные показывающие дифференциальные манометры с вертикальной мембраной:

    1 - «плюсовая» камера;
    2 - «минусовая» камера;
    3 - чувствительная гофрированная мембрана;
    4 - передающий шток;
    5 - передаточный механизм;
    6 - предохранительный клапан

    Дифманометр с вертикальной мембраной (Рис. 2.25) состоит из «плюсовой» 1 и «минусовой» 2 рабочих камер, разделенных чувствительной гофрированной мембраной 3. Под воздействием давления мембрана деформируется, в результате чего перемещается ее центр вместе с закрепленным на нем передающим штоком 4. Линейное смещение штока в передаточном механизме 5 преобразуется в осевое вращение трибки, и соответственно указательной стрелки, отсчитывающей на шкале прибора измеряемое давление.

    Для сохранения работоспособности чувствительной гофрированной мембраны при превышении максимального допустимого статического давления предусмотрен открывающийся предохранительный клапан 6. Причем конструкции этих клапанов могут быть различны. Соответственно такие приборы не могут использоваться, когда не допускается контакт сред из «плюсовой» и «минусовой» камер.


    Рис. 2.26

    Мембранный показывающий дифференциальный манометр с горизонтальной мембраной:

    1 - «плюсовая» камера;
    2 - «минусовая» камера;
    3 - входной блок;
    4 - чувствительная гофрированная мембрана;
    5 - толкатель;
    6 - сектор;
    7 - трибка;
    8 - стрелка;
    9 - циферблат;
    10 - разделительный сильфон

    Дифманометр с горизонтальной чувствительной мембраной показан на рис. 2.26. Входной блок 3 состоит из двух частей, между которыми устанавливается гофрированная мембрана 4. В ее центре закреплен толкатель 5, передающий перемещение от мембраны, через сектор 6, трибку 7 к стрелке 8. В этом передаточном звене линейное перемещение толкателя преобразуется в осевое вращение стрелки 8, отслеживающей на шкале циферблата 9 измеряемое давление. В этой конструкции применена сильфонная система вывода толкателя из зоны рабочего давления. Разделительный сильфон 10 своим основанием герметично закрепляется на центре чувствительной мембраны, а верхней частью также герметично прикрепляется к входному блоку. Такая конструкция исключает контакт измеряемой и окружающей сред.
    Конструкция входного блока предусматривает возможность промывки или продувки «плюсовой» и «минусовой» камер и обеспечивает применение таких приборов для работы даже в условиях загрязненных рабочих сред.


    Рис. 2.27

    Мембранный двухкамерный показывающий дифманометр:

    1 - «плюсовая» камера;
    2 - «минусовая» камера;
    3 - передающий шток;
    4 - сектор;
    5 - трибка;
    6 - коромысло

    Двухкамерная система измерения дифференциального давления применена в конструкции прибора, показанного на рис. 2.27. Измеряемые потоки среды направляются в «плюсовую» 1 и «минусовую» 2 рабочие камеры, основными функциональными элементами которых являются автономные чувствительные мембраны. Преобладание одного давления над другим приводит к линейному перемещению передающего штока 3, которое через коромысло 6 передается соответственно на сектор 4, трибку 5 и систему стрелочной индикации измеряемого параметра.
    Дифманометры с двухкамерной системой измерения используются для измерения малых дифференциальных давлений при высоких статических нагрузках, вязких сред и сред с твердыми вкраплениями.


    Рис. 2.28.

    Дифманометр с магнитным преобразователем:

    1 - поворотный магнит;
    2 - стрелка;
    3 - корпус;
    4 - магнитный поршень;
    5 - фторопластовый сальник;
    6 - рабочий канал;
    7 - пробка;
    8 - диапазонная пружина;
    9 - блок электроконтактов

    Принципиально иной показывающий дифманометр изображен на рис. 2.28. Поворотный магнит 1, на торце которого установлена стрелка 2, размещен в корпусе 3, выполненном из немагнитного металла. Магнитный поршень, уплотненный фторопластовым сальником 5, может передвигаться в рабочем канале 6. Магнитный поршень 4 со стороны «минусового» давления подпирает пробка 7, в свою очередь поджимаемая диапазонной пружиной 8.
    Среда «плюсового» давления через соответствующий подводящий штуцер воздействует на магнитный поршень и сдвигает его вместе с пробкой 7 по каналу 6 до уравновешивания такого смещения противодействующими силами - «минусовым» давлением и диапазонной пружиной. Движение магнитного поршня приводит к осевому вращению поворотного магнита и соответственно указательной стрелки. Такой сдвиг пропорционален перемещению стрелки. Полное согласование достигается подбором упругих характеристик диапазонной пружины.
    В дифманометре с магнитным преобразователем предусмотрен блок 9, замыкающий и размыкающий соответствующие контакты при прохождении вблизи его магнитного поршня.

    Приборы с магнитным преобразователем устойчивы к воздействию статического давления (до 10 МПа). Они обеспечивают относительно невысокую погрешность (примерно 2 %) в диапазоне функционирования до 0,4 Мпа и используются для измерения давления воздуха, газов, различных жидкостей.


    Показывающий дифференциальный манометр на основе трубчатой пружины

    1 и 2 - держатели;
    3 и 4 - трубчатые пружины;
    5 и 8 - трибки;
    6 - стрелка «плюсового» давления;
    7 и 9 - шкалы избыточного давления;
    10 - стрелка «минусового» давления

    В приборах такого типа на автономных держателях 1 и 2, соединенных вместе, установлены трубчатые пружины. Каждый держатель вместе с трубчатым чувствительным элементом образовывают автономные измерительные каналы. Среда «плюсового» давления поступает через входной штуцер держателя 2 в трубку 4, деформирует ее овал, в результате чего перемещается наконечник трубки и это перемещение через соответствующий зубчатый сектор передается на трибку 5. Эта трибка соответственно приводит к отклонению указательной стрелки 6, которая показывает на шкале 7 значение «плюсового» избыточного давления.

    «Минусовое» давление посредством держателя 1, трубчатой пружины 3, трибки 8 приводит к перемещению циферблата 9, объединенного со стрелкой 10, которая на шкале 7 отслеживает значение измеряемого параметра.

    Дифференциальные манометры (далее - дифманометры), как отмечалось в п.1.3, являются названием отнесенным в нашей стране к показывающим приборам. (Устройства, обеспечивающие электрический выходной сигнал, пропорциональный измеряемому дифференциальному давлению имеют название измерительных преобразователей разности давлений). Хотя отдельные производители, а также некоторые специалисты-эксплуатанционщики измерительные преобразователи разности давлений также называют дифманометрами.

    Дифманометры нашли основное применение в технологических процессах для измерения, контроля, регистрации и регулирования следующих параметров:

    · расхода различных жидких, газообразных и парообразных сред по перепаду давления на разного рода сужающих устройствах (стандартных диафрагмах, соплах, включая сопла Вентури) и дополнительно вводимых в поток гидро- и аэродинамических сопротивлениях, например на преобразователях типа Annubar или на нестандартных гидро- и аэродинамических препятствиях;

    · перепада - разности давления, вакуумметрических, избыточных, в двух точках технологического цикла, включая потери на фильтрах систем вентиляции и кондиционирования воздуха;

    · уровня жидких сред по величине гидростатического столба.

    Тематики

    • средства измерения давления differential pressure measurement Wikipedia
    • Maximum sustainable yield - In population ecology and economics, maximum sustainable yield or MSY is, theoretically, the largest yield (or catch) that can be taken from a species stock over an indefinite period. Fundamental to the notion of sustainable harvest, the concept… … Wikipedia

      Maximum entropy probability distribution - In statistics and information theory, a maximum entropy probability distribution is a probability distribution whose entropy is at least as great as that of all other members of a specified class of distributions. According to the principle of… … Wikipedia

      Maximum entropy thermodynamics - In physics, maximum entropy thermodynamics (colloquially, MaxEnt thermodynamics) views equilibrium thermodynamics and statistical mechanics as inference processes. More specifically, MaxEnt applies inference techniques rooted in Shannon… … Wikipedia

      pressure - 1. A stress or force acting in any direction against resistance. 2. (P, frequently followed by a subscript indicating location)In physics and physiology, the force per unit area exerted by a gas or liquid against the walls of its container or… … Medical dictionary

      Osmotic pressure - Morse equation redirects here. For the potential energy of a diatomic molecule, see Morse potential. For the functions in differential topology, see Morse theory. Osmotic pressure on red blood cells Osmotic pressure is the pressure which needs to … Wikipedia

      Timeline of temperature and pressure measurement technology - A history of temperature measurement and pressure measurement technology.Timeline800s* 800s mdash; Differential pressure controls developed by the Banū Mūsā brothers. )

      где выражение - это функция, которая дифференцируется, второй аргумент является переменной, по которой нужно брать производную, третий (необязательный) - порядок производной (по умолчанию - первый порядок).

      Например:

      Вообще обязательным для функции diff является только первый аргумент. В таком случае функция возвращает дифференциал выражения. Дифференциал соответствующей переменной обозначается через del(имя переменной):

      Как видим из синтаксиса функции, пользователь имеет возможность определить одновременно несколько переменных дифференцирования и задать порядок для каждой из них:

      Если использовать параметрическую функцию, то форма записи функции изменяется: после имени функции записываются символы ":=", а обращение к функции осуществляется через ее имя с параметром:

      Производная может быть вычислена в заданной точке. Это осуществляется так:

      Функция diff используется также и для обозначения производных в дифференциальных уравнениях, о чем идет речь ниже.


      Интегралы

      Для нахождения интегралов в системе используется функция integrate. Для нахождения неопределенного интеграла в функции используются два аргумента: имя функции и переменная, по которой происходит интегрирование. Например:

      В случае неоднозначного ответа Maxima может задать дополнительный вопрос:

      Ответ должен содержать текст из вопроса. В данном случае, если значение переменной y больше "0", это будет "positive" (положительное), а иначе - "negative" отрицательное). При этом допускается ввод только первой буквы слова.

      Для нахождения определенного интеграла в функции следует указать дополнительные аргументы: пределы интеграла:

      Maxima допускает задания и бесконечных пределов интегрирования. Для этого для третьего и четвертого аргументов функции используются значения "-inf" и "inf":

      Для нахождения приближенного значения интеграла в численном виде, как отмечалось ранее, следует выделить результат в ячейке вывода, вызывать на ней контекстное меню и выбрать из него пункт "To Float" (преобразовать в число с плавающей точкой).

      Способна система вычислять и кратные интегралы. Для этого функции integrate вкладываются одна в другую. Ниже приводятся примеры вычисления двойного неопределенного интеграла и двойного определенного интеграла :


      Решения дифференциальных уравнений

      По своим возможностями в части решения дифференциальных уравнений Maxima ощутимо уступает, например, Maple. Но Maxima все же позволяет решать обычные дифференциальные уравнения первого и второго порядков, а также их системы. Для этого - в зависимости от цели - используют две функции. Для общего решения обычных дифференциальных уравнений используется функция ode2, а для нахождения решений уравнений или систем уравнений по начальным условиям - функция desolve.

      Функция ode2 имеет такой синтаксис:

      ode2(уравнение, зависимая переменная, независимая переменная);

      Для обозначения производных в дифференциальных уравнениях используется функция diff. Но в этом случае с целью отображения зависимости функции от ее аргумента она записывается в виде "diff(f(x), x), а сама функция - f(x).

      Пример. Найти общее решение обычного дифференциального уравнения первого порядка y" - ax = 0.

      Если значение правой части уравнения равняется нулю, то ее вообще можно опускать. Естественно, правая часть уравнения может содержать выражение.

      Как видим, во время решения дифференциальных уравнений Maxima использует постоянную интегрирования %c, которая с точки зрения математики является произвольной константой, определяемой из дополнительных условий.

      Осуществить решение обычного дифференциального уравнения можно и другим, более простым для пользователя, способом. Для этого следует выполнить команду Уравнения > Solve ODE (Решить обычное дифференциальное уравнение) и в окне "Решить ОДУ" ввести аргументы функции ode2.

      Maxima позволяет решать дифференциальные уравнения второго порядка. Для этого также применяют функцию ode2. Для обозначения производных в дифференциальных уравнениях используется функция diff, в которой добавляют еще один аргумент - порядок уравнения: "diff(f(x), x, 2). Например решение обычного дифференциального уравнения второго порядка a·y"" + b·y" = 0 будет иметь вид:

      Совместно с функцией ode2 можно использовать три функции, применение которых позволяет найти решение при определенных ограничениях на основании общего решения дифференциальных уравнений, полученного функцией ode2:

      1. ic1(результат работы функции ode2, начальное значение независимой переменной в виде x = x 0 , значение функции в точке x 0 в виде y = y 0). Предназначена для решения дифференциального уравнения первого порядка с начальными условиями.
      2. ic2(результат работы функции ode2, начальное значение независимой переменной в виде x = x 0 , значение функции в точке x 0 в виде y = y 0 , начальное значение для первой производной зависимой переменной относительно независимой переменной в виде (y,x) = dy 0). Предназначена для решения дифференциального уравнения второго порядка с начальными условиями
      3. bc2(результат работы функции ode2, начальное значение независимой переменной в виде x = x 0 , значение функции в точке x 0 в виде y = y 0 , конечное значение независимой переменной в виде x = x n , значение функции в точке x n в виде y = y n). Предназначена для решения краевой задачи для дифференциального уравнения второго порядка.

      Подробно с синтаксисом этих функций можно ознакомиться в документации к системе.

      Выполним решение задачи Коши для уравнения первого порядка y" - ax = 0 с начальным условием y(п) = 1.

      Приведем пример решения краевой задачи для дифференциального уравнения второго порядка y""+y=x с начальными условиями y(o) = 0; y(4)=1.

      Следует иметь в виду, что достаточно часто система не может решить дифференциальные уравнения. Например при попытке найти общее решение обычного дифференциального уравнения первого порядка получаем:

      В таких случаях Maxima или выдает сообщение об ошибке (как в данном примере) или просто возвращает значение "false".

      Другой вариант решения обычных дифференциальных уравнений первого и второго порядков предназначен для поиска решений с начальным условиями. Он реализуется с помощью функции desolve.

      Синтаксис функции:

      desolve(дифференциальное уравнение, переменная);

      Если осуществляется решение системы дифференциальных уравнений или есть несколько переменных, то уравнение и/или переменные подаются в виде списка:

      desolve([список уравнений], [переменная1, переменная2,...]);

      Так же как и для предыдущего варианта, для обозначения производных в дифференциальных уравнениях используется функция diff, которая имеет вид "diff(f(x), x).

      Начальные значения для переменной предоставляются функцией atvalue. Эта функция имеет такой синтаксис:

      atvalue(функция, переменная = точка, значение в точке);

      В данном случае предусматривается, что значения функций и (или) их производных задаются для нуля, потому синтаксис функции atvalue имеет вид:

      atvalue(функция, переменная = 0, значение в точке "0");

      Пример. Найти решение дифференциального уравнения первого порядка y"=sin(x) с начальным условием.

      Заметим, что и при отсутствии начального условия функция также сработает и выдаст результат:

      Это позволяет осуществить проверку решения для конкретного начального значения. Действительно, подставляя в полученный результат значение y(0) = 4, как раз и получаем y(x) = 5 - cos(x).

      Функция desolve дает возможность решать системы дифференциальных уравнений с начальными условиями.

      Приведем пример решения системы дифференциальных уравнений с начальными условиями y(0) = 0; z(0) = 1.


      Обработка данных

      Статистический анализ

      Система дает возможность рассчитать основные статистические описательные статистики, с помощью которых описываются наиболее общие свойства эмпирических данных. К основным описательным статистикам относят среднюю, дисперсию, стандартное отклонение, медиану, моду, максимальное и минимальное значение, размах вариации и квартили. Возможности Maxima в этом плане несколько скромны, но большинство этих статистик с ее помощью рассчитать достаточно просто.

      Самым простым способом расчета статистических описательных статистик является использование палитры "Statistics" (Статистика).

      Панель содержит ряд инструментов, сгруппированных в четыре группы.

      1. Статистические показатели (описательные статистики):
        • mean (средняя арифметическая);
        • median (медиана);
        • variance (дисперсия);
        • deviation (среднее квадратичное отклонение).
      2. Тесты.
      3. Построение пяти типов графиков:
        • гистограмма (Histogram). Используется в первую очередь в статистике для изображения интервальных рядов распределения. Во время ее построения по оси ординат откладывают части или частоты, а на оси абсцисс - значения признака;
        • диаграмма рассеяния (диаграмма корреляции, поле корреляции, Scatter Plot) - график по точкам, когда точки не соединяются. Используется для отображения данных для двух переменных, одна из которых является факторной, а другая - результативной. С ее помощью осуществляется графическое представление пар данных в виде множества точек ("тучи") на координатной плоскости;
        • ленточная диаграмма (Bar Chart) - график в виде вертикальных столбцов;
        • секторная, или круговая, диаграмма (Pie Chart). Такая диаграмма разделена на несколько сегментов-секторов, площадь каждого из которых пропорциональна их части;
        • коробочная диаграмма (коробка с усами, шкатулка с усами, Box Plot, box-and-whisker diagram). Именно она чаще всего используется для изображения статистических данных. Информация такого графика является очень содержательной и полезной. Он одновременно отображает несколько величин, которые характеризуют вариационный ряд: минимальное и максимальное значение, среднюю и медиану, первый и третий квартиль.
      4. Инструменты для считывания или создания матрицы. Для использования инструментов палитры необходимо иметь начальные данные в виде матрицы - одномерного массива. Его можно создать в документе с текущей сессией и в дальнейшем подставлять его название как входные данные в окнах инструментов палитры аналогично решению уравнений с помощью панели общих математических действий (General Math). Можно и непосредственно задавать в данные в окнах ввода входных данных. В этом случае они вводятся в принятом в системе виде, то есть в квадратных скобках и через запятую. Понятно, что первый вариант является значительно лучшим, поскольку он требует только одноразового введения данных.

      Кроме панели, все статистические инструменты могут быть использованы также и с помощью соответствующих функций.



  • THE BELL

    Есть те, кто прочитали эту новость раньше вас.
    Подпишитесь, чтобы получать статьи свежими.
    Email
    Имя
    Фамилия
    Как вы хотите читать The Bell
    Без спама