THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

К окислительно-восстановительным реакциям относятся такие, которые сопровождающиеся перемещением электронов от одних частиц к другим. При рассмотрении закономерностей протекания окислительно-восстановительных реакций используется понятие степени окисления.

Степень окисления

Понятие степени окисления введено для характеристики состояния элементов в соединениях. Под степенью окисления понимается условный заряд атома в соединении, вычисленный исходя из предположения, что соединение состоит из ионов . Степень окисления обозначается арабской цифрой со знаком плюс при смещении электронов от данного атома к другому атому и цифрой со знаком минус при смещении электронов в обратном направлении. Цифру со знаком “+” или “-“ ставят над символом элемента. Степень окисления указывает состояние окисления атома и представляет собой всего лишь удобную форму для учета переноса электронов: ее не следует рассматривать ни как эффективный заряд атома в молекуле (например, в молекуле LiF эффективные заряды Li и F равны соответственно + 0,89 и -0,89, тогда как степени окисления +1 и -1), ни как валентность элемента (например, в соединениях CH 4 , CH 3 OH, HCOOH, CO 2 валентность углерода равна 4, а степени окисления соответственно равны -4, -2, +2, +4). Численные значения валентности и степени окисления могут совпадать по абсолютной величине лишь при образовании соединений с ионной структурой.

При определении степени окисления используют следующие правила:

Атомы элементов, находящихся в свободном состоянии или в виде молекул простых веществ, имеют степень окисления, равную нулю, например Fe, Cu, H 2 , N 2 и т.п.

Степень окисления элемента в виде одноатомного иона в соединении, имеющем ионное строение, равна заряду данного иона,

1 -1 +2 -2 +3 -1

например, NaCl , Cu S, AlF 3 .

Водород в большинстве соединений имеет степень окисления +1, за исключением гидридов металлов (NaH, LiH), в которых степень окисления водорода равна -1.

Наиболее распространенная степень окисления кислорода в соединениях -2 , за исключением пероксидов (Na 2 O 2 , Н 2 О 2), в которых степень окисления кислорода равна –1 и F 2 O, в котором степень окисления кислорода равна +2.

Для элементов с непостоянной степенью окисления ее значение можно рассчитать, зная формулу соединения и учитывая, что алгебраическая сумма степеней окисления всех элементов в нейтральной молекуле равна нулю. В сложном ионе эта сумма равна заряду иона. Например, степень окисления атома хлора в молекуле HClO 4 , вычисленная исходя из суммарного заряда молекулы = 0, где х – степень окисления атома хлора), равна +7. Степень окисления атома серы в ионе (SO 4) 2- [х + 4(-2) = -2] равна +6.

Окислительно-восстановительные свойства веществ

Любая окислительно-восстановительная реакция состоит из процессов окисления и восстановления. Окисление - это процесс отдачи электронов атомом, ионом или молекулой реагента. Вещества, которые отдают свои электроны в процессе реакции и при этом окисляются, называют восстановителями.

Восстановление – это процесс принятия электронов атомом, ионом или молекулой реагента.

Вещества, которые принимают электроны и при этом восстанавливаются, называют окислителями.

Реакции окисления-восстановления всегда протекают как единый процесс, называемый окислительно-восстановительной реакцией. Например, при взаимодействии металлического цинка с ионами меди восстановитель (Zn) отдает свои электроны окислителю – ионам меди (Cu 2+):

Zn + Cu 2+ Zn 2+ + Cu

Медь выделяется на поверхности цинка, а ионы цинка переходят в раствор.

Окислительно-восстановительные свойства элементов связаны со строением их атомов и определяются положением в периодической системе Д.И. Менделеева. Восстановительная способность элемента обусловлена слабой связью валентных электронов с ядром. Атомы металлов, содержащие на внешнем энергетическом уровне небольшое число электронов склонны к их отдаче, т.е. легко окисляются, играя роль восстановителей. Самые сильные восстановители – наиболее активные металлы.

Критерием окислительно-восстановительной активности элементов может служить величина их относительной электроотрицательности : чем она выше, тем сильнее выражена окислительная способность элемента, и чем ниже, тем ярче проявляется его восстановительная активность. Атомы неметаллов (например, F, O) обладают высоким значением сродства к электрону и относительной электроотрицательности, они легко принимают электроны, т.е. являются окислителями.

Окислительно-восстановительные свойства элемента зависят от степени его окисления. У одного и того же элемента различают низшую, высшую и промежуточные степени окисления.

В качестве примера рассмотрим серу S и ее соединения H 2 S, SO 2 и SO 3 . Связь между электронной структурой атома серы и его окислительно-восстановительными свойствами в этих соединениях наглядно представлена в таблице 1.

В молекуле H 2 S атом серы имеет устойчивую октетную конфигурацию внешнего энергетического уровня 3s 2 3p 6 и поэтому не может больше присоединять электроны, но может их отдавать.

Состояние атома, в котором он не может больше принимать электроны, называется низшей степенью окисления.

В низшей степени окисления атом теряет окислительную способность и может быть только восстановителем.

Таблица.1.

Формула вещества

Электронная формула

Окислительно-восстановительные свойства

1s 2 2s 2 2p 6 3s 2 3p 6

–2
; - 6
; - 8
восстановитель

1s 2 2s 2 2p 6 3s 2 3p 4

+ 2

окислитель

–4
;

- 6

восстановитель

1s 2 2s 2 2p 6 3s 2 3p o

+ 4
;

+ 6

окислитель

-2
восстановитель

1s 2 2s 2 2p 6 3s o 3p 0

+ 2
; + 6
;

+ 8

окислитель

В молекуле SO 3 все внешние электроны атома серы смещены к атомам кислорода. Следовательно, в этом случае атом серы может только принимать электроны, проявляя окислительные свойства.

Состояние атома, в котором он отдал все валентные электроны, называется высшей степенью окисления. Атом, находящийся в высшей степени окисления, может быть только окислителем.

В молекуле SO 2 и элементарной сере S атом серы находится в промежуточных степенях окисления , т.е., имея валентные электроны, атом может их отдавать, но, не имея завершенного р - подуровня, может и принимать электроны до его завершения.

Атом элемента, имеющий промежуточную степень окисления, может проявлять как окислительные, так и восстановительные свойства, что определяется его ролью в конкретной реакции.

Так, например роль сульфит - аниона SOв следующих реакциях различна:

5Na 2 SO 3 +2KMnO 4 + 3H 2 SO 4  2MnSO 4 + 5Na 2 SO 4 + K 2 SO 4 + 3H 2 O (1)

H 2 SO 3 + 2 H 2 S  3 S + 3 H 2 O (2)

В реакции (1) сульфит-анион SOв присутствии сильного окислителяKMnO 4 играет роль восстановителя; в реакции (2) сульфит-анион SO- окислитель, так как H 2 S может проявлять только восстановительные свойства.

Таким образом, среди сложных веществ восстановителями могут быть:

1. Простые вещества, атомы которых обладают низкими значениями энергии ионизации и электроотрицательности (в частности, металлы).

2. Сложные вещества, содержащие атомы в низших степенях окисления:

HCl ,H 2 S ,N H 3

Na 2 S O 3 , Fe Cl 2 , Sn (NO 3) 2 .

Окислителями могут быть:

1. Простые вещества, атомы которых обладают высокими значениями сродства к электрону и электроотрицательности - неметаллы.

2. Сложные вещества, содержащие атомы в высших степенях окисления: +7 +6 +7

KMn O 4 , K 2 Cr 2 O 7 , HClO 4 .

3. Сложные вещества, содержащие атомы в промежуточных степенях окисления:

Na 2 S O 3 , Mn O 2 , Mn SO 4 .

Задание №1

Установите соответствие между уравнением реакции и свойством элемента азота, которое он проявляет в этой реакции: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

Ответ: 4221

Пояснение:

А) NH 4 HCO 3 – соль, в состав которой входит катион аммония NH 4 + . В катионе аммония азот всегда имеет степень окисления, равную -3. В результате реакции он превращается в аммиак NH 3 . Водород практически всегда (кроме его соединений с металлами) имеет степень окисления, равную +1. Поэтому, чтобы молекула аммиака была электронейтральной, азот должен иметь степень окисления, равную -3. Таким образом, изменения степени окисления азота не происходит, т.е. он не проявляет окислительно-восстановительных свойств.

Б) Как уже было показано выше, азот в аммиаке NH 3 имеет степень окисления -3. В результате реакции с CuO аммиак превращается в простое вещество N 2 . В любом простом веществе степень окисления элемента, которым оно образовано, равна нулю. Таким образом, атом азота теряет свой отрицательный заряд, а поскольку за отрицательный заряд отвечают электроны, это означает их потерю атомом азота в результате реакции. Элемент, который в результате реакции теряет часть своих электронов, называется восстановителем.

В) В результате реакции NH 3 со степенью окисления азота, равной -3, превращается в оксид азота NO. Кислород практически всегда имеет степень окисления, равную -2. Поэтому для того, чтобы молекула оксида азота была электронейтральной, атом азота должен иметь степень окисления +2. Это означает, что атом азота в результате реакции изменил свою степень окисления с -3 до +2. Это говорит о потере атомом азота 5 электронов. То есть азот, как и случает Б, является восстановителем.

Г) N 2 – простое вещество. Во всех простых веществах элемент, который их образует, имеет степень окисления, равную 0. В результате реакции азот превращается в нитрид лития Li3N. Единственная степень окисления щелочного металла, кроме нуля (степень окисления 0 бывает у любого элемента), равна +1. Таким образом, чтобы структурная единица Li3N была электронейтральной, азот должен иметь степень окисления, равную -3. Получается, что в результате реакции азот приобрел отрицательный заряд, что означает присоединение электронов. Азот в данной реакции окислитель.

Задание №2

Установите соответствие между схемой реакции и свойством элемента фосфора, которое он проявляет в этой реакции: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 1224

Задание №3

УРАВНЕНИЕ РЕАКЦИИ

А) 4NH 3 + 5O 2 → 4NO + 6H 2 O

Б) 2Cu(NO 3) 2 → 2CuO + 4NO 2 + O 2

В) 4Zn + 10HNO 3 → NH 4 NO 3 + 4Zn(NO 3) 2 + 3H 2 O

Г) 3NO 2 + H 2 O → 2HNO 3 + NO

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 1463

Задание №4

Установите соответствие между уравнением реакции и изменением степени окисления окислителя в ней: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

УРАВНЕНИЕ РЕАКЦИИ ИЗМЕНЕНИЕ СТЕПЕНИ ОКИСЛЕНИЯ ОКИСЛИТЕЛЯ

А) SO 2 + NO 2 → SO 3 + NO

Б) 2NH 3 + 2Na → 2NaNH 2 + H 2

В) 4NO 2 + O 2 + 2H 2 O → 4HNO 3

Г) 4NH 3 + 6NO → 5N 2 + 6H 2 O

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 3425

Задание №5

Установите соответствие между схемой реакции и коэффициентом перед окислителем в ней: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

СХЕМА РЕАКЦИИ КОЭФФИЦИЕНТ ПЕРЕД ОКИСЛИТЕЛЕМ

А) NH 3 + O 2 → N 2 + H 2 O

Б) Cu + HNO 3 (конц.) → Cu(NO 3) 2 + NO 2 + H 2 O

В) C + HNO 3 → NO 2 + CO 2 + H 2 O

Г) S + HNO 3 →H 2 SO 4 + NO

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 3442

Задание №6

Установите соответствие между уравнением реакции и изменением степени окисления окислителя в ней: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

УРАВНЕНИЕ РЕАКЦИИ ИЗМЕНЕНИЕ СТЕПЕНИ ОКИСЛЕНИЯ ОКИСЛИТЕЛЯ

А) 2NH 3 + K → 2KNH 2 + H 2

Б) H 2 S + K → K 2 S + H 2

В) 4NH 3 + 6NO → 5N 2 + 6H 2 O

Г) 2H 2 S + 3O 2 → 2SO 2 + 2H 2 O

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 4436

Задание №7

Установите соответствие между исходными веществами и свойством меди, которое этот элемент проявляет в данной реакции: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 2124

Задание №8

Установите соответствие между схемой реакции и свойством серы, которое она проявляет в данной реакции: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 3224

Задание №9

Установите соответствие между схемой реакции и свойством фосфора, которое он проявляет в этой реакции: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 3242

Задание №10

Установите соответствие между схемой реакции и свойством азота, которое он проявляет в этой реакции: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 2141

Задание №11

Установите соответствие между схемой реакции и свойством фтора, которое он проявляет в этой реакции: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 1444

Задание №12

Установите соответствие между схемой реакции и изменением степени окисления восстановителя: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

СХЕМА РЕАКЦИИ

А) NaIO → NaI + NaIO 3

Б) HI + H 2 O 2 → I 2 + H 2 O

В) NaIO 3 → NaI + O 2

Г) NaIO 4 → NaI + O 2

1) I +5 → I −1

2) O −2 → O 0

3) I +7 →I −1

4) I +1 → I −1

5) I +1 → I +5

6) I −1 → I 0

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 5622

Задание №13

Установите соответствие между уравнением реакции и изменением степени окисления восстановителя в данной реакции: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

УРАВНЕНИЕ РЕАКЦИИ ИЗМЕНЕНИЕ СТЕПЕНИ ОКИСЛЕНИЯ ВОССТАНОВИТЕЛЯ

А) H 2 S + I 2 → S + 2HI

Б) Cl 2 + 2HI → I 2 + 2HCl

В) 2SO 3 + 2KI → I 2 + SO 2 + K 2 SO 4

Г) S + 3NO 2 → SO 3 + 3NO

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 5331

Задание №14

Установите соответствие между уравнением окислительно-восстановительной реакции и изменением степени окисления серы в этой реакции: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

УРАВНЕНИЕ РЕАКЦИИ ИЗМЕНЕНИЕ СТЕПЕНИ ОКИСЛЕНИЯ СЕРЫ

А) S + O 2 → SO 2

Б) SO 2 + Br 2 + 2H 2 O → H 2 SO 4 + 2HBr

В) C + H 2 SO 4 (конц.) → CO 2 + 2SO 2 + 2H 2 O

Г) 2H 2 S + O 2 → 2H 2 O + 2S

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 4123

Задание №15

ИЗМЕНЕНИЕ СТЕПЕНИ ОКИСЛЕНИЯ ФОРМУЛЫ ВЕЩЕСТВ

А) S −2 → S +4

Б) S −2 → S +6

В) S +6 → S −2

Г) S −2 → S 0

1) Cu 2 S и O 2

2) H 2 S и Br 2 (р-р)

3) Mg и H 2 SO 4 (конц.)

4) H 2 SO 3 и O 2

5) PbS и HNO 3 (конц.)

6) C и H 2 SO 4 (конц.)

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 1532

Задание №16

Установите соответствие между изменением степени окисления серы в реакции и формулами исходных веществ, которую в нее вступают: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ИЗМЕНЕНИЕ СТЕПЕНИ ОКИСЛЕНИЯ ФОРМУЛЫ ВЕЩЕСТВ

А) S 0 → S +4

Б) S +4 → S +6

В) S −2 → S 0

Г) S +6 → S +4

1) Cu и H 2 SO 4 (разб.)

2) H 2 S и O 2 (недост.)

3) S и H 2 SO 4 (конц.)

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 3523

Задание №17

Установите соответствие между свойствами азота и уравнением окислительно-восстановительной реакции, в которой он проявляет эти свойства: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 2143

Задание №18

Установите соответствие между изменением степени окисления хлора в реакции и формулами исходных веществ, которую в нее вступают: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ИЗМЕНЕНИЕ СТЕПЕНИ ОКИСЛЕНИЯ ФОРМУЛЫ ИСХОДНЫХ ВЕЩЕСТВ

А) Cl 0 → Cl −1

Б) Cl −1 → Cl 0

В) Cl +5 → Cl −1

Г) Cl 0 → Cl +5

1) KClO 3 (нагревание)

2) Cl 2 и NaOH(горяч. р-р)

3) KCl и H 2 SO 4 (конц.)

6) KClO 4 и H 2 SO 4 (конц.)

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 2412

Задание №19

Установите соответствие между формулой иона и его способностью проявлять окислительно-восстановительные свойства: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 2332

Задание №20

Установите соответствие между схемой химической реакции и изменением степени окисления окислителя: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

СХЕМА РЕАКЦИИ ИЗМЕНЕНИЕ СТЕПЕНИ ОКИСЛЕНИЯ ОКИСЛИТЕЛЯ

А) MnCO 3 + KClO 3 → MnO 2 + KCl + CO 2

Б) Cl 2 + I 2 + H 2 O → HCl + HIO 3

В) H 2 MnO 4 → HMnO 4 + MnO 2 + H 2 O

Г) Na 2 SO 3 + KMnO 4 + KOH → Na 2 SO 4 + K 2 MnO 4 + H 2 O

1) Cl 0 → Cl −

2) Mn +6 → Mn +4

3) Cl +5 → Cl −

4) Mn +7 → Mn +6

5) Mn +2 → Mn +4

6) S +4 → S +6

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 3124

Задание №21

Установите соответствие между схемой реакции и изменением степени окисления восстановителя в этой реакции: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

По этому признаку различают окислительно-восстановительные реакции и реакции, протекающие без изменения степеней окисления химических элементов.

К ним относится множество реакций, в том числе все реакции замещения, а также те реакции соединения и разложения, в которых участвует хотя бы одно простое вещество, например:


Как вы помните, коэффициенты в сложных окислительно-восстановительных реакциях расставляют, используя метод электронного баланса:

В органической химии ярким примером окислительно-восстановительных реакций могут служить свойства альдегидов.

1. Они восстанавливаются в соответствующие спирты:

2. Альдегиды окисляются в соответствующие кислоты:


Сущность всех приведенных выше примеров окислительно-восстановительных реакций была представлена с помощью хорошо известного вам метода электронного баланса. Он основан на сравнении степеней окисления атомов в реагентах и продуктах реакции и на балансировании числа электронов в процессах окисления и восстановления. Этот метод применяют для составления уравнений реакций, протекающих в любых фазах. Этим он универсален и удобен. Но в то же время он имеет серьезный недостаток - при выражении сущности окислительно-восстановительных реакций, протекающих в растворах, указываются частицы, которые реально не существуют.

В этом случае удобнее использовать другой метод - метод полуреакций. Он основан на составлении ионноэлектронных уравнений для процессов окисления и восстановления с учетом реально существующих частиц и последующем суммировании их в общее уравнение. В этом методе не используют понятие «степень окисления», а продукты определяются при выводе уравнения реакции.

Продемонстрируем этот метод на примере: составим уравнение окислительно-восстановительной реакции цинка с концентрированной азотной кислотой.

1. Записываем ионную схему процесса, которая включает только восстановитель и продукт его окисления, окислитель и продукт его восстановления:

2. Составляем ионно-электронное уравнение процесса окисления (это 1-я полуреакция):

3. Составляем ионно-электронное уравнение процесса восстановления (это 2-я полуреакция):

Обратите внимание: электронно-ионные уравнения составляются в соответствии с законом сохранения массы и заряда.

4. Записываем уравнения полуреакций так, чтобы число электронов между восстановителем и окислителем было сбалансированно:

5. Суммируем почленно уравнения полуреакций. Составляем общее ионное уравнение реакции:

Проверяем правильность составления уравнения реакции в ионном виде:

  • Соблюдение равенства по числу атомов элементов и по числу зарядов
    1. Число атомов элементов должно быть равно в левой и правой частях ионного уравнения реакции.
    2. Общий заряд частиц в левой и правой частях ионного уравнения должен быть одинаков.

6. Записываем уравнение в молекулярной форме. Для этого добавляем к ионам, входящим в ионное уравнение, необходимое число ионов противоположного заряда.

Расчет степени окисления

Резюме

1. Формирование кадрового состава - одна из наиболее существенных областей работы менеджера по персоналу.

2. Для того чтобы обеспечить организацию необходимым кадровым ресурсом, важно разработать адекватную задачам ситуацию во внешней среде и технологию деятельности, структуру фирмы; рассчитать потребность в персонале.

3. Для разработки программ найма необходимо провести анализ кадровой ситуации в регионе, разработать процедуры привлечения и оценки кандидатов, провести адаптационные мероприятия по включению новых сотрудников в организацию.

Контрольные вопросы

  1. Какие группы факторов необходимо учесть при создании организационной структуры?
  2. Какие этапы проектирования организации могут быть выделены?
  3. Объясните понятие “качественная оценка потребности в персонале”.
  4. Охарактеризуйте понятие “дополнительная потребность в персонале”.
  5. С какой целью проводится анализ кадровой ситуации в регионе?
  6. С какой целью проводится анализ деятельности?
  7. Какие стадии анализа деятельности можно выделить?
  8. Объясните, что представляет собой профессиограмма?
  9. Какие факторы внешней среды влияют на процесс набора кандидатов?
  10. Охарактеризуйте источники внутреннего и внешнего найма.
  11. Как оценить качество набора?
  12. Какие методы используются при оценке кандидатов?
  13. Какие парадигмы конкурсного набора вы знаете?
  14. Назовите этапы адаптации сотрудника в организации.

Для вычисления степени окисления элемента следует учитывать следующие положения:

1. Степени окисления атомов в простых веществах равны нулю (Na 0 ; H 2 0).

2. Алгебраическая сумма степеней окисления всех атомов, входящих в состав молекулы, всегда равна нулю, а в сложном ионе эта сумма равна заряду иона.

3. Постоянную степень окисления имеют атомы: щелочных металлов (+1), щелочноземельных металлов (+2), водорода (+1) (кроме гидридов NaH, CaH 2 и др., где степень окисления водорода -1), кислорода (-2) (кроме F 2 -1 O +2 и пероксидов, содержащих группу–O–O–, в которой степень окисления кислорода -1).

4. Для элементов положительная степень окисления не может превышать величину, равную номеру группы периодической системы.

Примеры:

V 2 +5 O 5 -2 ; Na 2 +1 B 4 +3 O 7 -2 ; K +1 Cl +7 O 4 -2 ; N -3 H 3 +1 ; K 2 +1 H +1 P +5 O 4 -2 ; Na 2 +1 Cr 2 +6 O 7 -2

Существует два типа химических реакций:

A Реакции, в которых не изменяется степень окисления элементов:

Реакции присоединения

SO 2 + Na 2 O Na 2 SO 3

Реакции разложения

Cu(OH) 2 – t CuO + H 2 O

Реакции обмена

AgNO 3 + KCl AgCl + KNO 3

NaOH + HNO 3 NaNO 3 + H 2 O

B Реакции, в которых происходит изменение степеней окисления атомов элементов, входящих в состав реагирующих соединений:



2Mg 0 + O 2 0 2Mg +2 O -2

2KCl +5 O 3 -2 – t 2KCl -1 + 3O 2 0

2KI -1 + Cl 2 0 2KCl -1 + I 2 0

Mn +4 O 2 + 4HCl -1 Mn +2 Cl 2 + Cl 2 0 + 2H 2 O

Такие реакции называются окислительно - восстановительными.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама