THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

По способности проводить электрический ток твёрдые тела первоначально разделяли на проводники и диэлектрики. Позже было замечено, что некоторые вещества проводят электрический ток хуже, чем проводники, но и к диэлектрикам их тоже нельзя отнести. Их выделили в отдельную группу полупроводников. Характерные отличия полупроводников от проводников:

  1. Значительная зависимость проводимости полупроводников от температуры.
  2. Сильное влияние на проводимость полупроводников даже незначительного количества примесей.
  3. Влияние на их проводимость различных излучений (световых, радиационных и др.). По этим особенностям полупроводники ближе к диэлектрикам, чем к проводникам.

Для производства полупроводниковых приборов используются в основном германий, кремний, арсенид галлия. Германий является редким элементом, рассеянным в природе, кремний же наоборот очень распространён. Однако встречается не в чистом виде, а только в виде соединений с другими элементами, в основном с кислородом. Арсенид галлия – это соединение мышьяка с галлием. Его стали применять сравнительно недавно. По сравнению с германием и кремнием арсенид галлия меньше подвержен воздействию температуры и радиации.

Для понятия механизма работы полупроводниковых приборов нужно сначала ознакомиться с проводимостью в полупроводниках и механизмом образования p

-n переходов.

Наиболее широко используются полупроводники германий и кремний. Они относятся к IV группе периодической системы Менделеева. На внешней оболочке атома германия (или кремния) находятся 4 валентных электрона. Каждый из них образует с соседними четырьмя атомами ковалентные связи. Они образуются двумя электронами, каждый из которых принадлежит одному из соседних атомов. Парноэлектронные связи очень устойчивы, поэтому каждая электронная пара прочно связана со своей атомной парой и не может свободно перемещаться в объёме полупроводника. Это справедливо для химически чистого полупроводника, находящегося при температуре близкой к 0 К

(абсолютный нуль). При повышении температуры атомы полупроводника начинают совершать тепловое колебательное движение. Энергия этого движения передаётся электронам, и для некоторых из них она оказывается достаточной, чтобы оторваться от своих атомов. Эти атомы превращаются в положительные ионы, а оторвавшиеся электроны могут свободно перемещаться, т.е. становятся носителями тока. Если говорить точнее, уход электрона приводит к частичной ионизации 2-х соседних атомов. Появляющийся при этом единичный положительный заряд следует относить не к тому или иному атому, а к нарушению парноэлектронной связи, оставленной электроном. Отсутствие электрона в связи называется дыркой. Дырка имеет положительный заряд равный по абсолютной величине заряду электрона. Дырка может быть занята одним из электронов соседней связи, при этом образуется дырка в соседней связи. Переход электрона из одной связи в другую соответствует перемещению дырки в обратном направлении. Практически удобнее рассматривать непрерывное движение положительного заряда, чем поочерёдное перемещение электронов из связи в связь. Проводимость, которая возникает в объёме полупроводника за счёт нарушения связей, называется собственной проводимостью . Различают два типа проводимости: n – типа и p - типа (от слов negative – отрицательный, positive – положительный). Проводимость n – типа называют электронной, а p – типа – дырочной.

Отметим, что нарушение валентных связей может происходить не только за счёт тепловой энергии, но и за счёт энергии света или энергии электрического поля.

Всё, что мы рассмотрели, относится к чистым полупроводникам, т.е. к полупроводникам без примесей. Введение же примесей изменяет электрические свойства полупроводника. Атомы примеси в кристаллической решётке занимают места основных атомов и образуют парноэлектронные связи с соседними атомами. Если в структуру чистого полупроводника (германия) ввести атом вещества, относящегося к V группе периодической системы элементов (например, атом мышьяка), то этот атом также будет образовывать связи с соседними атомами германия. Но атомы V группы имеют на внешней оболочке 5 валентных электронов. Четыре из них образуют устойчивые парноэлектронные связи, а пятый окажется лишним. Этот избыточный электрон связан со своим атомом намного слабее и, чтобы оторвать его от атома, требуется меньше энергии, чем для освобождения электрона из парноэлектронной связи. Кроме того, превращение такого электрона в свободный носитель заряда не связано с одновременным образованием дырки. Уход электрона с внешней оболочки атома мышьяка превращает его в положительный ион. Тогда уже можно говорить об ионизации данного атома, этот положительный заряд не будет перемещаться, т.е. не является дыркой.

При увеличении содержания мышьяка в кристалле германия увеличивается количество свободных электронов без увеличения количества дырок, как это имело место при собственной проводимости. Если концентрация электронов значительно превышает концентрацию дырок, то основными носителями тока будут электроны. В этом случае полупроводник называют полупроводником n – типа. Теперь введём в кристалл германия атом III группы, например, атом индия. У него три валентных электрона. Он образует устойчивые связи с тремя атомами германия. Четвёртая связь остаётся незаполненной, но не несёт в себе заряда, поэтому атом индия и смежный с ним атом германия остаются электрически нейтральными. Уже при небольшом тепловом возбуждении электрон одной из соседних парноэлектронных связей может перейти в эту четвёртую связь.

Что при этом произойдёт? Во внешней оболочке индия появится лишний электрон, атом превращается в отрицательный ион. Нарушится электрическая нейтральность в той парноэлектронной связи, откуда пришёл электрон. Появится положительный заряд – дырка в этой нарушенной связи. При увеличении содержания индия будет увеличиваться количество дырок, и они станут основными носителями заряда. В этом случае полупроводник называется полупроводником p – типа.

Электронно-дырочный переход (p – n переход).

p – n переходом называют область, находящуюся на границе раздела между дырочной и электронной областями одного кристалла. Переход создаётся не простым соприкосновением полупроводниковых пластин p и n типа. Он создаётся в одном кристалле введением двух различных примесей, создающем в нём электронную и дырочную области.

Рис.1. Механизм образования и действия p – n перехода.

а – основные и неосновные носители в областях полупроводника.

б – образование p – n перехода.

в – направление протекания диффузионного тока и тока проводимости.

г – p–n переход под действием внешнего обратного напряжения.

1 – электроны; 2 – дырки; 3 – граница раздела; 4 – неподвижные ионы.

Рассмотрим полупроводник, в котором имеются две области: электронная и дырочная. В первой – высокая концентрация электронов, во второй – высокая концентрация дырок. Согласно закону выравнивания концентрации электроны стремятся перейти (диффундировать) из n – области, где их концентрация выше в p – область, дырки же – наоборот. Такое перемещение зарядов называется диффузией. Ток, который при этом возникает – диффузионным. Выравнивание концентраций происходило бы до тех пор, пока дырки и электроны не распределились бы равномерно, но этому мешают силы возникающего внутреннего электрического поля. Дырки, уходящие из p – области оставляют в ней отрицательно ионизированные атомы, а электроны, уходящие из n области – положительно ионизированные атомы. В результате дырочная область становится заряженной отрицательно, а электронная – положительно. Между областями возникает электрическое поле, созданное двумя слоями зарядов.

Таким образом, вблизи границы раздела электронной и дырочной областей полупроводника возникает область, состоящая из двух слоёв противоположных по знаку зарядов, которые образуют так называемый p – n переход. Между p и n областями устанавливается потенциальный барьер. В рассматриваемом случае внутри образовавшегося p – n перехода действует электрическое поле Е, созданное

двумя слоями противоположных зарядов. Если направление электронов, попавших в электрическое поле, совпадает с ним, то электроны тормозятся. Для дырок – наоборот. Таким образом, благодаря возникшему электрическому полю, процесс диффузии прекращается. На РИС.1 видно, что и в n- и в p- области имеются как основные, так и неосновные носители заряда. Неосновные носители образуются за счёт собственной проводимости. Электроны p – области, совершая тепловое хаотическое движение, попадают в электрическое поле p – n перехода и переносятся в n область. То же происходит с дырками n – области. Ток, образованный основными носителями, называют диффузионным током, а неосновными - током проводимости. Эти токи направлены навстречу друг другу, и так как в изолированном проводнике общий ток равен нулю, то они равны. Приложим теперь к переходу внешнее напряжение плюсом к n – области, а минусом к p – области. Поле, создаваемое внешним источником, усилит действие внутреннего поля p – n перехода. Диффузионный ток уменьшится до нуля, так как электроны из n – области и дырки из p – области увлекаются от p – n перехода к внешним контактам, в результате чего p – n переход расширяется. Через переход проходит только ток проводимости, который называют обратным. Он состоит из электронного и дырочного токов проводимости. Напряжение, приложенное таким образом, называют обратным напряжением. Зависимость тока от напряжения показана на рисунке.

Рис. Вольт-амперная характеристика p-n перехода. 2 – прямая ветвь; 1 – обратная ветвь.

Если внешнее напряжение приложено плюсом к p – области, а минусом к n – области, то электрическое поле источника будет направлено навстречу полю p – n перехода и ослабит его действие. При этом увеличится диффузионный (прямой) ток (2). Это явление положено в основу работы полупроводникового диода.


Электронно-дырочный переход (сокращенно n-р-переход) возникает в полупроводниковом кристалле, имеющем одновременно области с n-типа (содержит донорные примеси) и р-типа (с акцепторными примесями) прово-димостями на границе между этими областями.

Допустим, у нас есть кристалл, в котором справа находится область полупроводника с дырочной, а слева - с электронной проводимостью (рис. 1). Благодаря тепловому движению при образовании контакта электроны из полупроводника n-типа будут диффундировать в область р-типа. При этом в области n-типа останется нескомпенсированный положительный ион донора.

Перейдя в область с дырочной проводимостью, электрон очень быстро рекомбинирует с дыркой, при этом в области р-типа образуется нескомпенсированный ион акцептора.

Аналогично электронам дырки из области р-типа диффундируют в электронную область, оставляя в дырочной области нескомпенсированный отрицательно заряженный ион акцептора. Перейдя в электронную область, дырка рекомбинирует с электроном. В результате этого в электронной области образуется нескомпенсированный положительный ион донора.

Диффузия основных носителей через переход создает электрический ток I осн, направленный из р-области в n-область.

В результате диффузии на границе между этими областями образуется двойной электрический слой разноименно заряженных ионов, толщина l которого не превышает долей микрометра.

Между слоями ионов возникает электрическое поле с напряженностью \(~\vec E_i\). Это поле препятствует дальнейшей диффузии основных носителей: электронов из n-области и дырок из р-области.

Необходимо заметить, что в n-области наряду с электронами имеются неосновные носители - дырки, а в р-области - электроны. В полупроводнике непрерывно происходят процессы рождения и рекомбинации пар. Интенсивность этого процесса зависит только от температуры и одинакова во всем объеме полупроводника. Предположим, что в n-области возникла пара "электрон-дырка". Дырка будет хаотически перемещаться по η области до тех пор, пока не рекомбинирует с каким-либо электроном. Однако если пара возникает достаточно близко к переходу, то прежде, чем произойдет рекомбинация, дырка может оказаться в области, где существует электрическое поле, и под его действием она перейдет в р-область, т.е. электрическое поле перехода способствует переходу неосновных носителей в соседнюю область. Соответственно, создаваемый ими ток I неосн мал. так как неосновных носителей мало.

Таким образом, возникновение электрического поля \(~\vec E_i\) приводит к появлению неосновного тока I неосн. Накопление зарядов около перехода за счет диффузии и увеличение \(~\vec E_i\) будут продолжаться до тех пор, пока ток I неосн не уравновесит ток I осн (I неосн = I осн) и результирующий ток через электронно-дырочный переход станет равным нулю.

Если к n-р-переходу приложить разность потенциалов, то внешнее электрическое поле \(~\vec E_{ist}\) складывается с полем \(~\vec E_i\) . Результирующее поле, существующее в области перехода, \(~\vec E = \vec E_{ist} + \vec E_i\). Токи I осн и I неосн совершенно различно ведут себя по отношению к изменению поля в переходе, I неосн с изменением поля очень слабо изменяется, так как он обусловлен количеством неосновных носителей, а оно в свою очередь зависит только от температуры.

I осн (диффузия основных носителей) очень чувствителен к полю напряженностью \(~\vec E\). I осн быстро увеличивается с ее уменьшением и быстро падает при увеличении.

Пусть клемма источника тока соединена с n-областью. а "-" - с р-областью (обратное включение (рис. 2, а)). Суммарное поле в переходе усиливается: E > E ist и основной ток уменьшается. Если \(~\vec E\) достаточно велика, то I осн << I неосн и ток через переход создается неосновными носителями. Сопротивление n-р-перехода велико, ток мал.

Если включить источник так, чтобы область n-типа оказалась подключена к а область р-типа к (рис. 2, б), то внешнее поле будет направлено навстречу \(~\vec E_i\), и \(~\vec E = \vec E_i + \vec E_{ist} \Rightarrow E = E_i - E_{ist} < E_i\), т.е. поле в переходе ослабляется. Поток основных носителей через переход резко увеличивается, т.е. I осн резко возрастает.

Основным элементом большинства полупроводниковых приборов является электронно-дырочный переход (р-п переход), представляющий собой переходный слой между двумя областями полупроводника, одна из которых имеет электронную электропроводность, другая – дырочную.

Реально электронно-дырочный переход нельзя создать простым соприкосновением пластин n и p-типа, так как при этом неизбежен промежуточный слой воздуха, окислов или поверхностных загрязнений, невозможно идеальное совпадение кристаллических решеток и т.д. Эти переходы получают вплавлением или диффузией соответствующих примесей в пластинки монокристалла полупроводника, или путем выращивания р-n перехода из расплава полупроводника с регулируемым количеством примесей и т.п. В зависимости от способа изготовления р-n переходы бывают сплавными, диффузионными и др. Однако, для упрощения анализа процесса формирования перехода будем считать, что изначально взяли и механически соединили два примесных полупроводниковых кристалла с проводимостью разного типа (n и р типа) с одинаковой концентрацией донорных и акцепторных примесей и с идеальной поверхностью и кристаллической решеткой. Рассмотрим явления, возникающие на их границе.

Рисунок 1.3. Образование р-п перехода

Вследствие того, что концентрация электронов в n области выше, чем в р-области, а концентрация дырок в р-области выше, чем в n области, на границе этих областей существует градиент концентраций носителей, вызывающий диффузионный ток электронов из n области в p область и диффузионный ток дырок из p области в n область. Кроме тока, обусловленного движением основных носителей заряда, через границу раздела полупроводников возможен ток неосновных носителей (электронов из р области в n область и дырок из n области в p-область). Однако, они незначительны (вследствие существенного различия в концентрациях основных и неосновных носителей) и мы их не будем учитывать.

Если бы электроны и дырки были нейтральными, то диффузия в конечном итоге привела к полному выравниванию их концентрации по всему объему кристалла. На самом же деле процессу диффузии препятствует электрическое поле, возникающее в приконтактной области. Уход электронов из приконтактной n области приводит к тому, что их концентрация здесь уменьшается и возникает нескомпенсированный положительный заряд ионов донорной примеси. Точно так же в р области вследствие ухода дырок их концентрация в приконтактном слое снижается и здесь возникает нескомпенсированный отрицательный заряд ионов акцепторной примеси. Ионы же «уйти» со своих мест не могут, т.к их удерживают сильнейшие силы (связи) кристаллической решетки. Таким образом, на границе областей n и p типа образуются два слоя противоположных по знаку зарядов. Возникает электрическое поле, направленное от положительно заряженных ионов доноров к отрицательно заряженным ионам акцепторов. Область, образовавшихся пространственных зарядов и электрическое поле собственно и представляет собой р-n переход. Его ширина имеет порядок от сотых долей до единиц микрометров, что является значительным размером по сравнению с размерами кристаллической решетки.

Таким образом, на границе р-n перехода образуется контактная разность потенциалов, численно характеризующаяся высотой потенциального барьера ( рисунка 1.3), который основным носителям каждой области необходимо преодолеть, чтобы попасть в другую область. Контактная разность потенциалов имеет порядок десятых долей вольт.

Поле р-п перехода является тормозящим для основных носителей заряда и ускоряющим для неосновных. Любой электрон, проходящий из электронной области в дырочную, попадает в электрическое поле, стремящееся возвратить его обратно в электронную область. Точно так же и дырки, попадая из области р в электрическое поле р-n перехода, будут возвращены этим полем обратно в p-область. Аналогичным образом поле воздействует на заряды, образовавшиеся в силу тех или иных причин внутри р-n перехода. В результате воздействия поля на носители заряда область р-п перехода оказывается обедненной, а ее проводимость – близкой к собственной проводимости исходного полупроводника.

Наличие собственного электрического поля определяет и прохождение тока при приложении внешнего источника напряжения – величина тока оказываются различными в зависимости от полярности приложенного напряжения. Если внешнее напряжение противоположно по знаку контактной разности потенциалов, то это приводит к снижению высоты потенциального барьера. Поэтому ширина р-n перехода уменьшится (рисунок 1.3, б). Улучшаются условия для токопрохождения: уменьшившийся потенциальный барьер смогут преодолеть основные носители, имеющие наибольшую энергию. При увеличении внешнего напряжения ток через р-п переход будет нарастать. Такая полярность внешнего напряжения и ток называются прямыми.

Нетрудно заметить, что преодолевшие потенциальный барьер носители заряда попадают в область полупроводника, для которой они являются неосновными. Они диффундируют в глубь соответствующей области полупроводника, рекомбинируя с основными носителями этой области. Так, по мере проникновения дырок из р-области в n область они рекомбинируют с электронами. Аналогичные процессы происходят и с электронами инжектированными в р-область.

Процесс введения носителей заряда через электронно-дырочный переход при понижении высоты потенциального барьера в область полупроводника, где эти носители заряда являются неосновными, называется инжекцией (от английского слова inject – впрыскивать, вводить).

Если поменять полярность внешнего напряжения (приложить обратное внешнее напряжение), то электрическое поле, создаваемое источником, совпадает c полем р-n перехода. Потенциальный барьер между р и n областями возрастает на величину внешнего напряжения. Количество основных носителей, способных преодолеть действие результирующего поля, уменьшается. Основные носители 6удут оттягиваться от приграничных слоев в глубь полупроводника. Ширина р-n перехода увеличивается (эффект Эрли, рисунок 1.3, в).

Для неосновных носителей (дырок в n области и электронов в р-области) потенциальный барьер в электронно-дырочном переходе отсутствует и они будут втягиваться полем в области р-n перехода. Это явление называется экстракцией. Током неосновных носителей, а также носителей, возникших в области р-п перехода, и будет определяться обратный ток через р-п переход. Величина обратного тока практически не зависит от внешнего обратного напряжения. Это можно объяснить тем, что в единицу времени количество генерируемых пар электрон–дырка при неизменной температуре остается неизменным.

Проведенный анализ позволяет рассматривать р-п переход как нелинейный элемент, сопротивление которого изменяется в зависимости от величины в полярности приложенного напряжения. При увеличении прямого напряжения сопротивление р-n перехода уменьшается. С изменением полярности и величины приложенного напряжения сопротивления р-n перехода резко возрастает. Следовательно, прямая (линейная) зависимость между напряжением и током (закон Ома) для р-n переходов не соблюдается.

Как видно из рисунка 1.3, р-п переход представляет собой двойной слой противоположных по знаку неподвижных объемных зарядов. Его можно уподобить обкладкам плоского конденсатора, обкладками которого являются р - и п-области, а диэлектриком служит р-п переход, практически не имеющий подвижных зарядов. Величина образовавшейся, так называемой, барьерной (зарядной) емкости обратно пропорциональна расстоянию между обкладками. При повышении запирающего напряжения, приложенного к переходу, увеличивается область, обедненная подвижными носителями заряда – электронами или дырками, что соответствует увеличению расстояния между обкладками конденсатора и уменьшению величины емкости. Следовательно, p-n переход можно использовать как емкость, управляемую величиной обратного напряжения. Значение барьерной емкости колеблется от десятков до сотен пикофарад; изменение этой емкости при изменении напряжения может достигать десятикратной величины

При прохождении через переход прямого тока по обе стороны от границы раздела областей накапливается избыточный заряд неосновных носителей противоположного знака, которые не могут мгновенно рекомбинировать. Он формируют емкость, которая получила наименование диффузионной. Диффузная емкость включена параллельно барьерной. Значения диффузионной емкости могут иметь порядок от сотен до тысяч пикофарад. Поэтому при прямом напряжений емкость р-п-перехода определяется преимущественно диффузионной емкостью, а при обратном напряжении – барьерной емкостью.

При прямом напряжении диффузионная емкость не оказывает существенного влияния на работу p-n перехода, так как она всегда зашунтирована малым прямым сопротивлением перехода. Ее негативное влияние проявляется при быстрых переключениях р-п перехода из открытого состояния в закрытое.

Граница между двумя соседними областями полупроводника, одна из которых обладает проводимостью n-типа, а другая p-типа, называется электронно-дырочным переходом (p-n-переходом). Он является основой большинства полупроводниковых приборов. Наиболее широко применяются плоскостные и точечные p-n-переходы.

Плоскостной p-n-переход представляет собой слоисто-контактный элемент в объеме кристалла на границе двух полупроводников с проводимостями p- и n-типов
(рис. 1.2, а). В производстве полупроводниковых приборов и интегральных микросхем применяются переходы типа р+- n- или р- п+ переходы. Индекс «+» подчеркивает большую электропроводность данной области монокристалла.

Рис. 1.2 Плоскостный (а) и точечный (б) p-n переходы

Рассмотрим физические процессы в плоскостном p-n-переходе (рис. 1.3). Поскольку концентрация электронов в полупроводнике n-типа значительно больше, чем в полупроводнике p-типа и, напротив, в полупроводнике p-типа высокая концентрация дырок, то на границе раздела полупроводников создается перепад (градиент) концентрации дырок dp/dx и электронов dn/dx. Это вызывает диффузионное перемещение электронов из n-области в p-область и дырок в противоположном направлении. Плотности дырочной и электронной составляющих диффузионного тока, обусловленных перемещением основных носителей, определяются выражениями:

где Dn и Dp – коэффициенты диффузии соответственно электронов и дырок.

Общая плотность тока через p-n-переход определяется суммой диффузионных и дрейфовых составляющих плотностей токов, которые при отсутствии внешнего напряжения равны. Так как диффузионный и дрейфовый потоки зарядов через p-n-переход перемещаются во встречном направлении, то они компенсируют друг друга. Поэтому в равновесном состоянии общая плотность тока через p-n-переход равна

Наличие двойного электрического слоя обусловливает возникновение в p-n-переходе контактной разности потенциалов, претерпевающей наибольшее изменение на границе полупроводников n-p-типов и называемой потенциальным барьером jк. Величина потенциального барьера определяется уравнением

где jТ = kT/q – тепловой потенциал (при нормальной температуре, т. е. при T =300 К jТ » » 0,026 В); рп и np – концентрация дырок и электронов в полупроводниках n- и р-типов. У германиевых переходов jТ = (0,3 – 0,4) В, у кремниевых jТ = (0,7 – 0,8) В.

Если подключить к p-n-переходу источник внешнего напряжения таким образом, чтобы плюс был приложен к области полупроводника n-типа, а минус – к области полупроводника p-типа (такое включение называют обратным, рис. 1.4), то обедненный слой расширяется, так как под воздействием внешнего напряжения электроны и дырки смещаются от p-n-перехода в разные стороны. При этом высота потенциального барьера также возрастает и становится равной jк+ u (рис. 1.5), поскольку напряжение внешнего смещения включено согласно контактной разности потенциалов.

Рис 1.4 Обратное смещение перехода

Рис 1.5 Изменение потенциального барьера

Так как напряжение внешнего источника прикладывается встречно контактной разности потенциалов, то потенциальный барьер снижается на величину u (см.
рис. 1.7), и создаются условия для инжекции основных носителей – дырок из полупроводника p -типа в полупроводник n -типа, а электронов – в противоположном направлении. При этом через p n -переход протекает большой прямой ток, обусловленный основными носителями заряда. Дальнейшее снижение потенциального барьера ведет к росту прямого тока при неизменном значении обратного дрейфового тока.

В процессе технологической обработки кристалла примесь вводится таким образом, что ее концентрация, а следовательно, концентрация основных носителей в одной из областей кристалла (обычно в полупроводнике p-типа) на два-три порядка превышает концентрацию примеси в другой области. Область с высокой концентрацией примеси (низкоомная область) является основным источником носителей подвижных зарядов через p n -переход и называется эмиттером. Область с низкой концентрацией примеси является высокоомной и называется базой. Поэтому доминирующей составляющей прямого тока, протекающего через p n -переход и состоящего из электронной и дырочной составляющих, будет та, которая определяется основными носителями зарядов области с более высокой их концентрацией

I пр = I p + I n = I 0 (e U пр / j Т 1). (1.11)

При |U пр | >> j Т переход по существу исчезает и ток ограничивается лишь сопротивлением (единицы и даже десятки ом) базовой области r б .

Вольтамперная характеристика (ВАХ) p n -перехода, построенная на основании выражений (1.10) и (1.11), имеет вид, показанный на рис. 1.8. Область ВАХ, лежащая в первом квадранте, соответствует прямому включению p n -перехода, а лежащая в третьем квадранте – обратному. Как отмечалось выше, при достаточно большом обратном напряжении возникает пробой перехода. Пробоем называют резкое изменение режима работы перехода, находящегося под обратным напряжением.

Характерной особенностью этого изменения является резкое уменьшение дифференциального сопротивления перехода r диф = du / di (u и i – напряжение на переходе и ток перехода соответственно). После начала пробоя незначительное увеличение обратного напряжения сопровождается резким увеличением обратного тока. В процессе пробоя ток может увеличиваться при неизменном и даже уменьшающемся (по модулю) обратном напряжении (в последнем случае дифференциальное сопротивление оказывается отрицательным). На ВАХ перехода (рис. 1.9) пробою соответствует область резкого изгиба характеристики вниз в третьем квадранте.

Рис. 1.8 Вольтамперная характеристика (а) и схема включения стабилитрона (б)

Различают три вида пробоя p-n -перехода: туннельный, лавинный и тепловой. И туннельный, и лавинный пробой принято называть электрическим пробоем.

Туннельный пробой происходит, когда геометрическое расстояние между валентной зоной и зоной проводимости (ширина барьера) достаточно мало, то возникает туннельный эффект – явление прохождения электронов сквозь потенциальный барьер. Туннельный пробой имеет место в р n -переходах с базой, обладающей низким значением удельного сопротивления.

Рис. 1.9 ВАХ p — n -перехода

Механизм лавинного пробоя подобен механизму ударной ионизации в газах. Лавинный пробой возникает, если при движении до очередного соударения с атомом дырка (или электрон) приобретает энергию, достаточную для ионизации атома. В результате число носителей резко возрастает, и ток через переход растёт. Расстояние, которое проходит носитель заряда до соударения, называют длиной свободного пробега. Лавинный пробой имеет место в переходах с высокоомной базой (имеющей большое удельное сопротивление). Характерно, что при этом пробое напряжение на переходе мало зависит от тока через него (крутопадающий участок в третьем квадранте ВАХ, см. рис. 1.9).

При тепловом пробое увеличение тока объясняется разогревом полупроводника в области р-n-перехода и соответствующим увеличением удельной проводимости. Тепловой пробой характеризуется отрицательным дифференциальным сопротивлением. Если полупроводник – кремний, то при увеличении обратного напряжения тепловой пробой обычно возникает после электрического (во время электрического пробоя полупроводник разогревается, а затем начинается тепловой пробой). После электрического пробоя p-n-переход не изменяет своих свойств. После теплового пробоя, если полупроводник успел нагреться достаточно сильно, свойства перехода необратимо изменяются (полупроводниковый прибор выходит из строя).

Как уже отмечалось, вследствие диффузии электронов и дырок через p-n-переход в области перехода возникают нескомпенсированные объемные (пространственные) заряды ионизированных атомов примесей, которые закреплены в узлах кристаллической решетки полупроводника и поэтому не участвуют в процессе протекания электрического тока. Однако объемные заряды создают электрическое поле, которое, в свою очередь, самым существенным образом влияет на движение свободных носителей электричества, т. е. на процесс протекания тока.

Изменение внешнего напряжения, приложенного к p-n-переходу, изменяет величину объемного пространственного заряда обедненного слоя. Следовательно, p-n-переход ведет себя как плоский конденсатор, емкость которого, определяемая отношением изменения пространственного заряда ¶Q к изменению напряжения ¶U при обратном включении перехода, называется барьерной и может быть найдена из уравнения

где e0 – диэлектрическая проницаемость вакуума; e – относительная диэлектрическая

проницаемость; S – площадь p- n -перехода; d – толщина обедненного слоя (толщина p n -перехода).

Изменение заряда в p- n -переходе может быть вызвано также изменением концентрации инжектированных неравновесных носителей в базе при прямом смещении p n -перехода. Отношение величины изменения инжектированного заряда к величине изменения прямого напряжения определяет диффузионную емкость p n -перехода:
С диф = д
Q инж /д U . Диффузионная емкость превышает барьерную при прямом смещении p n -перехода, однако имеет незначительную величину при обратном смещении.

Для создания различных полупроводниковых приборов, применяемых в электронных устройствах, используют кристаллические структуры, состоящие из чередующихся областей полупроводников п - и р -типа. Взависимости от типа полупроводникового прибора, число областей с разными типами проводимости может быть две и более. Основу любого полупроводникового прибора составляют электронно-дырочные переходы.

Электронно-дырочным переходом (или кратко р-п-переходом ) называют тонкий слой между двумя областями полупроводникового кристалла, одна из которых имеет электронную, а другая - дырочную электропроводность .

Технологический процесс создания электронно-дырочного перехода может быть различным: сплавление, диффузия одного вещества в другое, эпитаксия (ориентированный рост одного кристалла на поверхности другого) и др. По конструкции электронно-дырочные переходы могут быть симметричными (п п = р р ) и несимметричными (п п >> p p или п п << р р , при этом концентрации основных носителей отличаются в 100-1000 раз), резкими и плавными, плоскостными и точечными и др. Однако для всех типов переходов основным свойством является несимметричная электропроводность, при которой в одном направлении кристалл пропускает ток, а в другом - не пропускает.

Устройство полупроводникового кристалла с электронно-дырочным переходом показано на рисунке 1.5. Одна часть этого кристалла легирована (обогащена) донорной примесью и имеет электронную проводимость (п -область). Другая часть легирована акцепторной примесью и имеет дырочную проводимость (р -область). Кроме основных носителей в обеих частях кристалла имеется небольшая концентрация неосновных носителей (соответственно дырок в п -области и электронов в р -области).

Сразу после создания р -п -перехода при отсутствии внешнего электрического поля электроны из п -области стремятся проникнуть в р -область, где концентрация электронов значительно ниже. Аналогично, дырки из р -области перемещаются в п -область. В результате встречного движения противоположных зарядов возникает так называемый диффузионный ток р -п -перехода. Электроны, перешедшие в р -область, рекомбинируют с дырками, в результате чего в р -области вблизи границы раздела двух типов полупроводников появятся отрицательно заряженные неподвижные ионы акцепторной примеси. В свою очередь, уход электронов из п -области приводит к появлению в приконтактной части п -области нескомпенсированных положительно заряженных неподвижных ионов донорной примеси.

Рисунок 1.5 - Упрощенная структура р-п -перехода

Одновременно с перемещением электронов, из р -области в п -область наблюдается диффузионное перемещение дырок. Этот процесс сопровождается созданием таких же неподвижных положительных и отрицательных ионов вблизи границы раздела двух типов полупроводников в п -области и р -области.


Двойной слой неподвижных электрических зарядов (ионов) создает в области р -п -перехода объемный пространственный заряд, наличие которого приводит к появлению внутреннего электрического поля ( на рисунке 1.5). Вектор этого поля направлен таким образом, что оно препятствует дальнейшему диффузионному движению основных носителей зарядов. Поэтому через короткий промежуток времени на р-п -переходе устанавливается динамическое равновесие, он становится электрически нейтральным , а ток через р-п -переход - равным нулю .

Разность потенциалов, образованную приграничными зарядами, называют контактной разностью потенциалов y к (потенциальным барьером ), преодолеть которую носители без «сторонней помощи» не могут. Вместе с тем возникшее в р -п -переходе поле не препятствует движению неосновных носителей через переход, так как для них оно будет ускоряющим. Неосновные носители создают дрейфовый ток р -п -перехода.

Распределение плотности объемного заряда r в р -п -переходе при отсутствии внешнего электрического поля показано на рисунке 1.5.

Р-п -переход представляет собой слой полупроводника с низкой концентрацией подвижных носителей зарядов (обедненный слой ). Этот слой имеет повышенное электрическое сопротивление. Поскольку концентрация основных носителей зарядов в областях полупроводника различна, то и ширина обедненного слоя в р- и п- областях также будет различной (в области с меньшей концентрацией основных носителей она будет шире).

Контактная разность потенциалов y к на р-п- переходе зависит от концентрации примесей в областях полупроводника и определяется выражением:

где - температурный потенциал;

п i - концентрация носителей зарядов в нелегированном полупроводнике;

k » 1,38 × 10 -23 Дж/К - постоянная Больцмана;

Т - абсолютная температура, К;

q » 1,6×10 -19 Кл - заряд электрона.

При нормальной температуре (Т = 300 К) j Т » 26 мВ. Контактная разность потенциалов для германия при этом имеет значение 0,2-0,3 В, а для кремния - 0,6-0,7 В.

Высоту потенциального барьера можно изменять приложением внешнего напряжения к р-п- переходу. Если внешнее напряжение создает в р -п -переходе поле, вектор напряженности которого совпадает по направлению с вектором напряженности внутреннего поля (рисунок 1.6, а ), то высота потенциального барьера увеличивается, при обратной полярности приложенного напряжения высота потенциального барьера уменьшается (рисунок 1.6, б ). Если полярность поля, создаваемого приложенным внешним напряжением, противоположна полярности собственного (внутреннего) поля и внешнее напряжение равно контактной разности потенциалов, то потенциальный барьер исчезает полностью.

Рисунок 1.6 - Прямое и обратное смещение р-п -перехода

Если приложенное напряжение снижает потенциальный барьер, то оно называется прямым , а если повышает - то обратным .

Обратный ток (i обр) в р -п -переходе вызывается неосновными носителями одной из областей, которые, дрейфуя в электрическом поле области объемного заряда, попадают в область, где они уже являются основными носителями. Так как концентрация основных носителей существенно превышает концентрацию неосновных, то появление незначительного дополнительного количества основных носителей практически не изменит равновесного состояния полупроводника. Таким образом, обратный ток зависит только от количества неосновных носителей, появляющихся на границах области объемного заряда. Его предельное значение (обозначим I Т ) называют обратным током насыщения или тепловым током .

Внешнее приложенное напряжение определяет скорость перемещения этих носителей из одной области в другую, но не число носителей, проходящих через переход в единицу времени. Следовательно, обратный ток через р-п- переход является током проводимости и не зависит от высоты потенциального барьера, т. е. он остается постоянным при изменении обратного напряжения на переходе.

При прямом смещении p-п- перехода появляется диффузионный ток , вызванный диффузией основных носителей, преодолевающих потенциальный барьер. Пройдя р-п -переход, эти носители попадают в область полупроводника, для которой они являются неосновными носителями. Концентрация неосновных носителей при этом может существенно возрасти по сравнению с равновесной концентрацией. Такое явление носит название инжекции носителей.

Таким образом, при протекании прямого тока через переход из электронной области в дырочную будет происходить инжекция электронов , а из дырочной области в электронную будет происходить инжекция дырок .

Особенности устройства р -п -перехода и процессы, протекающие в нем, рассмотрены ранее.

Гетеропереходом называют переходный слой с существующим в нем диффузионным электрическим полем между двумя различными по химическому составу полупроводниками. При этом проводимости двух полупроводников, образующих гетеропереход, могут быть разными или одинаковыми. Кроме этого сам переход может быть выпрямляющим или омическим .

Омическим называется переход, электрическое сопротивление которого не зависит от направления тока через него.

На рисунке 1.10 показаны структуры двух разновидностей гетеропереходов (рисунок 1.10, а , б ), а также омического перехода на контакте полупроводников с одним типом электропроводности (рисунок 1.10, в ).

а б в

Рисунок 1.10 - Разновидности электрических переходов в полупроводниковых кристаллах

На рисунке 1.11 показаны структуры полупроводниковых диодов с выпрямляющим электрическим переходом в виде р-п- перехода (рисунок 1.11, а ) и на контакте Шоттки (рисунок 1.11, б ).

а б

Рисунок 1.11 - Структуры полупроводниковых диодов на основе

р-п -перехода (а ) и перехода Шотки (б )

Буквой Н на рисунке 1.11 обозначены невыпрямляющие (омические) переходы, а буквой В - выпрямляющие электрические переходы. Буквой М обозначен металлический слой.

В основе работы большинства полупроводниковых диодов лежат процессы, происходящие в р-п -переходе, причем в реальных диодах, как правило, используются несимметричные р-п -переходы. В таких переходах одна из областей кристалла (область с большей концентрацией основных носителей) бывает достаточно низкоомной (как правило - это р -область), а другая - высокоомной.

На рисунке 1.12 показано распределение основных носителей и области р-п -перехода в кристалле полупроводникового диода.

Рисунок 1.12 - Распределение носителей зарядов в кристалле полупроводникового диода

Вывод от р -области диода называют анодом , а от п -области - катодом . Условное графическое обозначение (УГО) диода в общем случае имеет вид, представленный на рисунке 1.13.

Рисунок 1.13 - УГО диода

Если положительный вывод источника напряжения подключен к аноду диода, а отрицательный - к катоду, то приложенное напряжение называется прямым , в противном случае - обратным . Ток через диод при прямом смещении р-п -перехода практически полностью определяется потоком основных носителей низкоомной области. Поэтому ее называют эмиттером. В связи с большей концентрацией носителей в низкоомной области ширина р-п -перехода в ней оказывается меньше, чем в высокоомной. Если различие в концентрации основных носителей велико, то р-п -переход почти целиком расположится в высокоомной области, которая получила название базы.

Вольт-амперная характеристика полупроводникового диода определяется, в общем случае, ВАХ р-п -перехода. На рисунке 1.14 показана ВАХ диода в сравнении с ВАХ обычного (анализируемого ранее) р-п -перехода. Различия в характеристиках связаны с тем, что при анализе свойств р-п -перехода не учитывались особенности структуры кристалла диода, сопротивления полупроводниковых слоев, ширина перехода.

Рисунок 1.14 - Общий вид ВАХ диода

Если к диоду приложено прямое напряжение, превышающее по величине контактную разность потенциалов (в частности, для германиевого диода y к = 0,2-0,3 В, для кремниевого - y к = 0,6-0,7 В), то диод открыт и пропускает прямой ток (прямая ветвь ВАХ, рисунок 1.14). При этом его сопротивление незначительно (десятки-сотни Ом) и падение напряжения на диоде составляет десятые доли вольт.

При подаче обратного напряжения по абсолютной величине меньшего U обр max диод заперт и через него протекает пренебрежительно малый обратный ток I обр (обратная ветвь ВАХ, рисунок 1.14). Если обратное напряжение превысит значение U обр max , то наступает пробой р-п -перехода диода (сначала электрический, а при дальнейшем увеличении напряжения - тепловой), при котором обратный ток резко возрастает. В случае возникновения теплового пробоя диод выходит из строя («сгорает»).

В зависимости от способа изготовления р -п -перехода различают точечные , сплавные , сварные и диффузионные диоды. В точечных диодах (рисунок 1.15, а ) к предварительно очищенной поверхности кристалла полупроводника электронной проводимости прижимается жесткая заостренная игла из сплава вольфрама с молибденом. После герметизации собранного диода через него пропускают электрические импульсы большой мощности. Под действием этих импульсов приконтактная область полупроводника сильно нагревается, и непосредственно под острием иглы образуется небольшая по размерам (от 5 до 40 мкм) р -область.

Рисунок 1.15 - Способы получения р-п -перехода

В сплавных и сварных диодах (рисунок 1.15, б , в ) р -п -переход получают с помощью тонкой проволочки, содержащей атомы акцепторной примеси, при ее вплавлении или сварке с кристаллом полупроводника п -типа.

В диффузионных диодах используют метод диффузии донорных или акцепторных примесей в полупроводниковый кристалл, имеющий противоположный тип электропроводности. Диффундирующие атомы изменяют тип электропроводности небольшой части кристалла, что создает р -п -переход. Для получения малой емкости в рассматриваемом виде диодов после диффузии проводят травление приповерхностных слоев полупроводника, после которого р -п -переход сохраняется на очень малом участке, имеющем вид столика, возвышающегося над остальным кристаллом (рисунок 1.15, г ).

Эту полупроводниковую структуру называют мезаструктурой (мезадиффузионные диоды). Другую разновидность диффузионных диодов представляют собой планарные и эпитаксиально-планарные приборы (рисунок 1.15, д ), в которых диффузия примеси осуществляется через специальные «окна» в защитной окисной пленке (например, из двуокиси кремния SiO 2). Кроме небольших значений барьерной емкости в диффузионных диодах удается значительно снизить время жизни неравновесных носителей заряда за счет дополнительной диффузии золота.

Цифрами на рисунке 1.15 обозначены: 1 - р -п -переход; 2 - кристалл; 3 - омический контакт.

Для того чтобы количественно характеризовать диоды, используют различные параметры, названия и количество которых зависят от типов диодов. Некоторые из параметров используют при характеристике диодов большинства подклассов.

К ним, в частности, относятся:

I пр макс - максимально допустимый постоянный прямой ток;

U пр - постоянное прямое напряжение, соответствующее заданному току;

U обр макс - максимально допустимое обратное напряжение диода;

I обр макс - максимально допустимый постоянный обратный ток диода;

r диф - дифференциальное сопротивление диода (при заданном режиме работы).

В настоящее время существуют диоды, предназначенные для работы в очень широком диапазоне токов и напряжений. Для наиболее мощных диодов I пр макс составляет килоамперы, а U обр макс - киловольты.

Классификация полупроводниковых диодов

Полупроводниковые диоды весьма многочисленны, и одним из основных классификационных признаков служит их назначение, которое связано с использованием определенного явления в р -n -переходе.

Первую группу составляют выпрямительные диоды , для которых основным является вентильный эффект (большая величина отношения прямого тока к обратному), но не предъявляется жестких требований к временным и частотным характеристикам.

В настоящее время наибольшее распространение получили кремниевые выпрямительные диоды, которые имеют следующие преимущества:

Примерно на два порядка меньшие (по сравнению с германиевыми) обратные токи при одинаковом напряжении;

Высокое значение допустимого обратного напряжения, которое достигает 1000-1500 В, в то время как у германиевых диодов оно находится в пределах 100-400 В;

Работоспособность кремниевых диодов сохраняется при температурах от -60 до +150 °С, германиевых - от -60 до +85 °С.

Однако в выпрямительных устройствах низких напряжений выгоднее применять германиевые диоды, так как их сопротивление при прямом смещении р -п -перехода в 1,5-2 раза меньше, чем у кремниевых, при одинаковом токе нагрузки, что уменьшает мощность, рассеиваемую внутри диода.

По значению выпрямленного тока выпрямительные диоды делят на диоды малой (I пр < 0,3 А), средней (0,3 А < I пр < 10 А) и большой (I пр > 10 А ) мощности.

Вторая группа диодов - высокочастотные и импульсные . В них также используют вентильный эффект, но это маломощные приборы, работающие при высоких частотах (в детекторных, смесительных каскадах) или в быстродействующих импульсных устройствах. Для диодов этих подклассов более важными являются параметры, характеризующие их быстродействие, в частности, емкость диода (обычно десятые доли-единицы пФ), время установления прямого и восстановления обратного сопротивлений (сотые доли-единицы микросекунд), частота без снижения режимов.

Условное графическое обозначение на принципиальных электрических схемах выпрямительных, высокочастотных и импульсных диодов одинаково и соответствует представленному на рисунке 1.13.

В диодах четвертой группы используют емкостные свойства р -п -перехода. В связи с тем, что р -п -переход представляет собой область , обедненную носителями зарядов , то его можно рассматривать как своеобразный плоский конденсатор , емкость которого определяется шириной р -п -перехода. Если к диоду приложить обратное напряжение и изменять его величину, то ширина р -п -перехода также будет изменяться, что эквивалентно изменению его емкости. Такое свойство р -п -перехода позволяет использовать полупроводниковый диод в качестве прибора с электрически управляемой емкостью - варикапа . Вольт-фарадная характеристика и УГО варикапа показаны на рисунке 1.17.

Кроме рассмотренных выше диодов в электронных устройствах широко используют диоды Шотки (рисунок 1.18, а ), а в специальных случаях - туннельные диоды (рисунок 1.18, б ).

Рисунок 1.17 - УГО и вольт-фарадная характеристика варикапа

а б

Рисунок 1.18 - УГО и вольт-амперные характеристики диода Шотки (а ) и туннельного диода (б )

Основным элементом диодов Шотки является электронный переход металл - полупроводник с нелинейной ВАХ. Свойства таких диодов во многом сходны со свойствами диодов с несимметричными р -п -переходами. Основное отличие диодов Шотки от диодов на основе электронно-дырочного перехода состоит в том, что в них формирование тока осуществляется основными носителями зарядов и не связано с инжекцией неосновных носителей зарядов и их рассасыванием, что обеспечивает значительно лучшие частотные характеристики таких диодов и повышает их быстродействие в импульсных устройствах.

Кроме того, сопротивление барьера Шоттки при прямом напряжении меньше прямого сопротивления р -n -перехода, поэтому прямые ветви ВАХ выпрямительного диода с барьером Шотки и диода с р-п- переходом отличаются. Диоды Шотки широко применяют в качестве элементов цифровых микросхем для улучшения их характеристик.

Туннельный диод - занимает особое место среди полупроводниковых диодов из-за свойственной ему внутренней положительной обратной связи по напряжению и хороших динамических свойств. Его ВАХ (рисунок 1.18, б ) имеет участок с отрицательным дифференциальным сопротивлением (участок 1 -2 ). Это позволяет использовать туннельный диод в качестве активного элемента в усилителях и автогенераторах СВЧ-диапазона.

Особую группу составляют излучающие диоды и фотодиоды .

Излучающий диод (УГО представлено на рисунке 1.19, а ) - полупроводниковый диод, излучающий под действием приложенного напряжения из области р -п -перехода кванты энергии . Излучение испускается через прозрачную стеклянную пластину, размещенную в корпусе диода.

а б

Рисунок 1.19 - УГО излучающего диода (а ) и фотодиода (б )

По характеристике излучения излучающие диоды делятся на две группы:

Диоды с излучением в видимой области спектра, получившие название светодиоды ;

Диоды с излучением в инфракрасной области спектра, получившие название ИK-диоды.

Принцип действия обоих групп диодов одинаков и базируется на самопроизвольной рекомбинации носителей заряда при прямом токе через выпрямляющий электрический переход . Известно, что рекомбинация носителей заряда сопровождается освобождением кванта энергии. Спектр частот последней определяется типом исходного полупроводникового материала. Основными материалами для изготовления светодиодов служат фосфид галлия , арсенид-фосфид галлия , карбид кремния . Большую часть энергии, выделяемой в этих материалах при рекомбинации носителей заряда, составляет тепловая энергия . На долю энергии видимого излучения в лучшем случае приходится (10-20) %. Поэтому КПД светодиодов невелик.

Светодиоды применяют в качестве световых индикаторов, а ИК-диоды - в качестве источников излучения в оптоэлектронных устройствах (в частности, в пультах дистанционного управления бытовой техники).

Фотодиод (УГО показано на рисунке 1.19, б ) - полупроводниковый прибор, принцип действия которого основан на использовании внутреннего фотоэффекта - генерации в полупроводнике под действием квантов света (фотонов) свободных носителей заряда .

Фотодиоды используют для преобразования светового (или инфракрасного) излучения в электрический ток (например, в устройствах дистанционного управления бытовых приборов).

Классификация современных полупроводниковых приборов по их назначению, физическим свойствам, основным электрическим параметрам, конструктивно-технологическим признакам, роду исходного полупроводникового материала находит отражение в системе условных обозначений их типов.

Система обозначений современных полупроводниковых диодов установлена отраслевым стандартом ОСТ 11 336.919-81 и базируется на ряде классификационных признаков.

В основу системы обозначений положен семизначный буквенно-цифровой код, первый элемент которого (буква - для приборов широкого применения, цифра - для приборов, используемых в устройствах специального назначения) обозначает исходный полупроводниковый материал, на основе которого изготовлен прибор. Второй элемент обозначения - буква, определяет подкласс приборов, третий элемент - цифра (или буква для оптопар), определяет основные функциональные возможности прибора. Четвертый элемент - двухзначное число, обозначающее порядковый номер разработки технологического типа прибора, пятый элемент - буква, условно определяет классификацию (разбраковку по параметрам) приборов, изготовленных по единой технологии.

Например :

КД102А (2Д102А) - кремниевый выпрямительный диод со средним выпрямленным током менее 0,3 А (согласно справочнику - не более 100 мА), номер разработки 2, группа А;

АЛ103Б (3Л103Б) - арсенид-галлиевый излучающий диод ИК-диапазона, номер разработки 3, группа Б;

КС156А (2С156А) - кремниевый стабилитрон мощностью не более 0,3 Вт с напряжением стабилизации 5,6 В (номер разработки 56), группа А.

Математическая модель диода

При анализе схем электронных устройств на ЭВМ все элементы схем, в том числе и диоды, заменяются их математическими моделями. Математическая модель диода - это совокупность математических выражений, описывающих токи и напряжения в эквивалентной схеме (схеме замещения) диода. В качестве схемы замещения диода можно использовать электрическую модель Эберса - Молла для одиночного электронно-дырочного перехода, показанную на рисунке 1.20.

Рисунок 1.20 - Схема замещения полупроводникового диода

Постоянное сопротивление R д включено в схему с целью учета тока утечки. Емкость С д представляет сумму барьерной и диффузионной емкостей перехода, r - объемное сопротивление тела базы, зависящее от геометрических размеров и степени легирования полупроводника. Управляемый напряжением на переходе и п источник тока I д моделирует статическую ВАХ диода.

Ток управляемого источника тока подчиняется закону :

где I Т - ток насыщения (обратный ток) р -п -перехода;

А и М - эмпирические коэффициенты;

Т - абсолютная температура.

Числовые значения коэффициентов А и М , как правило, находят экспериментально. С этой целью можно воспользоваться ВАХ диодов, приводимыми в справочной литературе либо снятыми экспериментально. Для каждого типа диода, взависимости от его основных характеристик, технологии изготовления и т. д., эти коэффициенты будут различными.

Предложенная модель хорошо аппроксимирует ВАХ диода, кроме той области, где наступает электрический пробой (рисунок 1.21). Но, как правило, режим пробоя для большинства диодов (кроме стабилитронов) является нерабочим режимом.

Рисунок 1.21 - Аппроксимация ВАХ диода

Электрическая схема замещения диода, представленная на рисунке 1.20, в общем случае является неполной. В электрической модели (а, следовательно, и при составлении математической модели) дискретного диода необходимо также учесть наличие индуктивностей выводов L 1 и L 2 , емкости корпуса С п и контактов С к (рисунок 1.22). Такая модель называется глобальной моделью дискретного диода.

Рисунок 1.22 - Глобальная модель диода



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама