THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Линейная зависимость и независимость векторов

Определения линейно зависимой и независимой систем векторов

Определение 22

Пусть имеем систему из n-векторови имеем набор чисел , тогда

(11)

называется линейной комбинацией данной системы векторов с данным набором коэффициентов.

Определение 23

Система векторовназываетсялинейно зависимой, если существует такой набор коэффициентов, из которых хотя бы один не равен нулю, что линейная комбинация данной системы векторов с этим набором коэффициентов равна нулевому вектору:

Пусть , тогда

Определение 24 (через представление одного вектора системы в виде линейной комбинации остальных)

Система векторов называетсялинейно зависимой, если хотя бы один из векторов этой системы можно представить в виде линейной комбинации остальных векторов этой системы.

Утверждение 3

Определения 23 и 24 эквивалентны.

Определение 25 (через нулевую линейную комбинацию)

Система векторов называетсялинейно независимой, если нулевая линейная комбинация этой системы возможна лишь при всехравных нулю.

Определение 26 (через невозможность представления одного вектора системы в виде линейной комбинации остальных)

Система векторов называетсялинейно независимой, если не один из векторов этой системы нельзя представить в виде линейной комбинации других векторов этой системы.

Свойства линейно зависимой и независимой систем векторов

Теорема 2 (нулевой вектор в системе векторов)

Если в системе векторов имеется нулевой вектор, то система линейно зависима.

Пусть, тогда.

Получим , следовательно, по определению линейно зависимой системы векторов через нулевую линейную комбинацию(12) система линейно зависима.

Теорема 3 (зависимая подсистема в системе векторов)

Если в системе векторов имеется линейно зависимая подсистема, то и вся система линейно зависима.

 Пусть- линейно зависимая подсистема, среди которых хотя бы одно не равно нулю:

Значит, по определению 23, система линейно зависима. 

Теорема 4

Любая подсистема линейно независимой системы линейно независима.

 От противного. Пусть система линейно независима и в ней имеется линейно зависимая подсистема. Но тогда по теореме 3 вся система будет также линейно зависимой. Противоречие. Следовательно, подсистема линейно независимой системы не может быть линейно зависимой.

Геометрический смысл линейной зависимости и независимости системы векторов

Теорема 5

Два вектора илинейно зависимы тогда и только тогда, когда.

Необходимость.

и- линейно зависимы, что выполняется условие. Тогда, т.е..

Достаточность.

линейно зависимы. 

Следствие 5.1

Нулевой вектор коллинеарен любому вектору

Следствие 5.2

Для того чтобы два вектора были линейно независимы необходимо и достаточно, чтобы был не коллинеарен .

Теорема 6

Для того чтобы система из трёх векторов была линейно зависима необходимо и достаточно, чтобы эти векторы были компланарными.

Необходимость.

Линейно зависимы, следовательно, один вектор можно представить в виде линейной комбинации двух других.

где и. По правилу параллелограммаесть диагональ параллелограмма со сторонами, но параллелограмм – плоская фигуракомпланарны- тоже компланарны.

Достаточность .

Компланарны. Приложим три вектора к точке О:

– линейно зависимы

Следствие 6.1

Нулевой вектор компланарен любой паре векторов.

Следствие 6.2

Для того чтобы векторы были линейно независимы необходимо и достаточно, чтобы они были не компланарны.

Следствие 6.3

Любой вектор плоскости можно представить в виде линейной комбинации любых двух неколлинеарных векторов этой же плоскости.

Теорема 7

Любые четыре вектора в пространстве линейно зависимы.

 Рассмотрим 4 случая:

Проведем плоскость через векторы , затем плоскость через векторы и плоскость через векторы . Затем проведем плоскости, проходящие через точкуD, параллельные парам векторов ; ; соответственно. По линиям пересечения плоскостей строим параллелепипедOB 1 D 1 C 1 ABDC .

Рассмотрим OB 1 D 1 C 1 – параллелограмм по построению по правилу параллелограмма.

Рассмотрим OADD 1 – параллелограмм (из свойства параллелепипеда), тогда

EMBED Equation.3 .

По теореме 1 такие, что. Тогда, и по определению 24 система векторов линейно зависимая. 

Следствие 7.1

Суммой трёх некомпланарных векторов в пространстве является вектор, совпадающий с диагональю параллелепипеда, построенного на этих трёх векторах, приложенных к общему началу, причём начало вектора суммы совпадает с общим началом этих трёх векторов.

Следствие 7.2

Если в пространстве взять 3 некомпланарных вектора, то любой вектор этого пространства можно разложить в линейную комбинацию данных трёх векторов.

Чтобы проверить является ли система векторов линейно-зависимой, необходимо составить линейную комбинацию этих векторов , и проверить, может ли она быть рана нулю, если хот один коэффициент равен нулю.

Случай 1. Система векторов заданна векторами

Составляем линейную комбинацию

Мы получили однородную систему уравнений. Если она имеет ненулевое решение, то определитель должен быть равен нулю. Составим определитель и найдём его значение.

Определитель равен нулю, следовательно, вектора линейно зависимы.

Случай 2. Система векторов заданна аналитическими функциями:

a) , если тождество верно, значит система линейно зависима.

Составим линейную комбинацию.

Необходимо проверить, существуют ли такие a, b, c (хотя бы одна из которых не равна нулю) при которых данное выражение равно нулю.

Запишем гиперболические функции

тогда линейная комбинация векторов примет вид:

Откуда , возьмём, например,, тогда линейная комбинацияравна нулю, следовательно, система линейно зависима.

Ответ: система линейно зависима.

b) , составим линейную комбинацию

Линейная комбинация векторов, должна быть равна нулю для любых значений x.

Проверим для частных случаев.

Линейная комбинация векторов равна нулю, только если все коэффициенты равны нулю.

Следовательно, система линейно не зависима.

Ответ: система линейно не зависима.

5.3. Найти какой-нибудь базис и определить размерность линейного пространства решений.

Сформируем расширенную матрицу и приведём её к виду трапеции методом Гаусса.

Чтоб получить какой-нибудь базис подставим произвольные значения:

Получим остальные координаты

5.4. Найти координаты вектора X в базисе, если он задан в базисе.

Нахождение координат вектора в новом базисе сводится к решению системы уравнений

Способ 1. Нахождение при помощи матрицы перехода

Составим матрицу перехода

Найдём вектор в новом базисе по формуле

Найдём обратную матрицу и выполним умножение

Способ 2. Нахождение путем составления системы уравнений.

Составим базисные вектора из коэффициентов базиса

Нахождение вектора в новом базисе имеет вид

Где d это заданный вектор x .

Полученное уравнение можно решить любым способом, ответ будет аналогичным.

Ответ: вектор в новом базисе .

5.5. Пусть x = ( x 1 , x 2 , x 3 ) . Являются ли линейными следующие преобразования.

Составим матрицы линейных операторов из коэффициентов заданных векторов.

Проверим свойство линейных операций для каждой матрицы линейного оператора.

Левую часть найдём умножением матрицы А на вектор

Правую часть найдем, умножив заданный вектор на скаляр .

Мы видим, что значит, преобразование не является линейным.

Проверим другие вектора.

Преобразование не является линейным.

Преобразование является линейным.

Ответ: Ах – не линейное преобразование, Вх – не линейное, Сх – линейное.

Примечание. Можно выполнить данное задание гораздо проще, внимательно посмотрев на заданные вектора. В Ах мы видим, что есть слагаемые которые не содержат элементы х , что не могло быть получено в результате линейной операции. В Вх есть элемент х в третьей степени, что также не могло быть получено умножением на вектор х .

5.6. Дано x = { x 1 , x 2 , x 3 } , Ax = { x 2 x 3 , x 1 , x 1 + x 3 } , Bx = { x 2 , 2 x 3 , x 1 } . Выполнить заданную операцию: ( A ( B A )) x .

Выпишем матрицы линейных операторов.

Выполним операцию над матрицами

При умножении полученной матрицы на Х, получим


Понятия линейной зависимости и независимости системы векторов является очень важными при изучении алгебры векторов, так как на них базируются понятия размерности и базиса пространства. В этой статье мы дадим определения, рассмотрим свойства линейной зависимости и независимости, получим алгоритм исследования системы векторов на линейную зависимость и подробно разберем решения примеров.

Навигация по странице.

Определение линейной зависимости и линейной независимости системы векторов.

Рассмотрим набор из p n-мерных векторов , обозначим их следующим образом . Составим линейную комбинацию этих векторов и произвольных чисел (действительных или комплексных): . Отталкиваясь от определения операций над n -мерными векторами, а так же свойств операций сложения векторов и умножения вектора на число, можно утверждать, что записанная линейная комбинация представляет собой некоторый n -мерный вектор , то есть, .

Так мы подошли к определению линейной зависимости системы векторов .

Определение.

Если линейная комбинация может представлять собой нулевой вектор тогда, когда среди чисел есть хотя бы одно, отличное от нуля, то система векторов называется линейно зависимой .

Определение.

Если линейная комбинация представляет собой нулевой вектор только тогда, когда все числа равны нулю, то система векторов называется линейно независимой .

Свойства линейной зависимости и независимости.

На основании данных определений, сформулируем и докажем свойства линейной зависимости и линейной независимости системы векторов .

    Если к линейно зависимой системе векторов добавить несколько векторов, то полученная система будет линейно зависимой.

    Доказательство.

    Так как система векторов линейно зависима, то равенство возможно при наличии хотя бы одного ненулевого числа из чисел . Пусть .

    Добавим к исходной системе векторов еще s векторов , при этом получим систему . Так как и , то линейная комбинация векторов этой системы вида

    представляет собой нулевой вектор, а . Следовательно, полученная система векторов является линейно зависимой.

    Если из линейно независимой системы векторов исключить несколько векторов, то полученная система будет линейно независимой.

    Доказательство.

    Предположим, что полученная система линейно зависима. Добавив к этой системе векторов все отброшенные векторы, мы получим исходную систему векторов. По условию – она линейно независима, а в силу предыдущего свойства линейной зависимости она должна быть линейно зависимой. Мы пришли к противоречию, следовательно, наше предположение неверно.

    Если в системе векторов есть хотя бы один нулевой вектор, то такая система линейно зависимая.

    Доказательство.

    Пусть вектор в этой системе векторов является нулевым. Предположим, что исходная система векторов линейно независима. Тогда векторное равенство возможно только тогда, когда . Однако, если взять любое , отличное от нуля, то равенство все равно будет справедливо, так как . Следовательно, наше предположение неверно, и исходная система векторов линейно зависима.

    Если система векторов линейно зависима, то хотя бы один из ее векторов линейно выражается через остальные. Если система векторов линейно независима, то ни один из векторов не выражается через остальные.

    Доказательство.

    Сначала докажем первое утверждение.

    Пусть система векторов линейно зависима, тогда существует хотя бы одно отличное от нуля число и при этом верно равенство . Это равенство можно разрешить относительно , так как , при этом имеем

    Следовательно, вектор линейно выражается через остальные векторы системы , что и требовалось доказать.

    Теперь докажем второе утверждение.

    Так как система векторов линейно независима, то равенство возможно лишь при .

    Предположим, что какой-нибудь вектор системы выражается линейно через остальные. Пусть этим вектором является , тогда . Это равенство можно переписать как , в его левой части находится линейная комбинация векторов системы, причем коэффициент перед вектором отличен от нуля, что указывает на линейную зависимость исходной системы векторов. Так мы пришли к противоречию, значит, свойство доказано.

Из двух последних свойств следует важное утверждение:
если система векторов содержит векторы и , где – произвольное число, то она линейно зависима.

Исследование системы векторов на линейную зависимость.

Поставим задачу: нам требуется установить линейную зависимость или линейную независимость системы векторов .

Логичный вопрос: «как ее решать?»

Кое-что полезное с практической точки зрения можно вынести из рассмотренных выше определений и свойств линейной зависимости и независимости системы векторов. Эти определения и свойства позволяют нам установить линейную зависимость системы векторов в следующих случаях:

Как же быть в остальных случаях, которых большинство?

Разберемся с этим.

Напомним формулировку теоремы о ранге матрицы, которую мы приводили в статье .

Теорема.

Пусть r – ранг матрицы А порядка p на n , . Пусть М – базисный минор матрицы А . Все строки (все столбцы) матрицы А , которые не участвуют в образовании базисного минора М , линейно выражаются через строки (столбцы) матрицы, порождающие базисный минор М .

А теперь поясним связь теоремы о ранге матрицы с исследованием системы векторов на линейную зависимость.

Составим матрицу A , строками которой будут векторы исследуемой системы :

Что будет означать линейная независимость системы векторов ?

Из четвертого свойства линейной независимости системы векторов мы знаем, что ни один из векторов системы не выражается через остальные. Иными словами, ни одна строка матрицы A не будет линейно выражаться через другие строки, следовательно, линейная независимость системы векторов будет равносильна условию Rank(A)=p .

Что же будет означать линейная зависимость системы векторов ?

Все очень просто: хотя бы одна строка матрицы A будет линейно выражаться через остальные, следовательно, линейная зависимость системы векторов будет равносильна условию Rank(A)

.

Итак, задача исследования системы векторов на линейную зависимость сводится к задаче нахождения ранга матрицы, составленной из векторов этой системы.

Следует заметить, что при p>n система векторов будет линейно зависимой.

Замечание : при составлении матрицы А векторы системы можно брать не в качестве строк, а в качестве столбцов.

Алгоритм исследования системы векторов на линейную зависимость.

Разберем алгоритм на примерах.

Примеры исследования системы векторов на линейную зависимость.

Пример.

Дана система векторов . Исследуйте ее на линейную зависимость.

Решение.

Так как вектор c нулевой, то исходная система векторов линейно зависима в силу третьего свойства.

Ответ:

Система векторов линейно зависима.

Пример.

Исследуйте систему векторов на линейную зависимость.

Решение.

Не сложно заметить, что координаты вектора c равны соответствующим координатам вектора , умноженным на 3 , то есть, . Поэтому, исходная система векторов линейно зависима.

Зададим в (действительном или комплексном) систему из векторов

По определению система (1) линейно независима, если из векторного равенства

где , , ..., - числа (соответственно действительные или комплексные), следует, что

Система векторов (1) называется линейно зависимой, если существуют числа , , ..., , одновременно не равные нулю, для которых выполняется равенство (2). Если для определенности считать, что , то из (2) следует, что

Таким образом, если система из векторов линейно зависима, то один из них есть, как говорят, линейная комбинация остальных, или, как еще говорят, зависит от остальных.

Так как все время будет идти речь о линейной зависимости, то термин линейный будем позволять себе иногда опускать. Будем также говорить зависимые или независимые векторы вместо зависимая или независимая система векторов.

Один вектор тоже образует систему - линейно независимую, если , и зависимую, если .

Если система векторов линейно независима, то любая часть этой системы тем более линейно независима. Иначе нашлась бы нетривиальная система чисел ,…,, для которой выполнялось бы

но тогда для системы , ..., , , которая тоже нетривиальна, имело бы место

Из сказанного следует, что если система векторов линейно зависима то любая пополненная система

обладает тем же свойством. В частности, система векторов, содержащая в себе нулевой вектор, всегда линейно зависима.

Составим матрицу, определяемую векторами системы (1):

Теорема 1. Если ранг , т.е. ранг равен числу векторов, то система (1) линейно независима.

Если же ранг , то система (1) линейно зависима.

Пример 1. Два вектора , в действительном пространстве образуют линейно независимую систему, если определитель

потому что векторное уравнение

эквивалентно двум уравнениям для соответствующих компонент

Но если , то система (5) имеет единственное тривиальное решение

Если же , то уравнениям (5) удовлетворяет некоторая нетривиальная система , т.е. при система векторов , линейно зависима.

Очевидно, сказать, что в действительном пространстве векторы и коллинеарны или линейно зависимы - это все равно. Но тогда сказать, что векторы и не коллинеарны или линейно независимы - это тоже все равно.

Пример 2. Система векторов , , ...., в действительном пространстве всегда линейно зависима. Геометрически это ясно из рис. 33: если произвольный вектор и , - неколлинеарные векторы, то всегда можно указать такие числа , , что

Это показывает, что система , , линейно зависима. Если же и - коллинеарные векторы, то они линейно зависимы. Тем более линейно зависимы , , .

По теореме 1, чтобы исследовать пару векторов , , мы должны записать матрицу из их координат

В данном случае .

а) Если ранг , то теорема утверждает, что векторы , линейно зависимы.

б) Если же ранг , то векторы , линейно независимы.

Это совпадает с приведенными выводами, потому что в случае а) и б).

Тот факт, что три произвольных вектора , , в линейно зависимы, тоже предусмотрен теоремой - ведь ранг

Пример 3. В трехмерном действительном пространстве два вектора

линейно зависимы тогда и только тогда, когда они коллинеарны.

В самом деле, пусть , коллинеарны. Если один из данных векторов нулевой, то они линейно зависимы. Если же и коллинеарны и не нулевые, то

где - некоторое число. Последнее означает, что , линейно зависимы.

Обратно, если , линейно зависимы, то один из них зависит от другого, например

т.е. векторы коллинеарны.

Если в этом случае рассмотреть матрицу

то элементы строк матрицы пропорциональны, и поэтому

т.е. наше утверждение согласуется с теоремой 1.

Пример 4. Рассмотрим теперь три вектора в :

Векторному уравнению

эквивалентна система из трех уравнений

Если , то система (7") имеет единственное тривиальное решение . Но тогда и уравнение (7) имеет единственное тривиальное решение и система векторов , , , линейно независима.

Если , то система (7"), следовательно, и уравнение (7) имеют нетривиальное решение (). Но тогда система векторов (, , ) линейно зависима. Но здесь можно различать детали:

1) Пусть ранг, где

Тогда по крайней мере одна из строк , пусть для определенности первая, имеет хотя бы один элемент, не равный нулю. Рассмотрим матрицу

Она имеет ранг 1, поэтому все порождаемые ею определители второго порядка равны нулю

Но тогда, очевидно, компоненты векторов и пропорциональны.

Аналогично, учитывая, что в матрице

тоже все определители второго порядка равны нулю, получим, что

где - некоторое число. Таким образом, в этом случае векторы , , коллинеарны.

2) Пусть теперь ранг . Тогда одна из матриц, состоящих из двух строк матрицы , имеет ранг 2. Пусть для определенности это есть матрица (см. (8)). На основании примера 3 векторы и , линейно независимы. Но система , , зависима, т. е. для некоторой нетривиальной тройки чисел ()

Здесь , потому что иначе , и в силу независимости системы , было бы . Но тогда равенство (9) можно разрешить относительно :

Таким образом, если , а ранг (см. (8)), то векторы и неколлинеарны, а вектор , принадлежит к плоскости этих векторов.. Существует не равный нулю определитель уравнений системы (2") удовлетворяются найденными числами (см.(11)) и произвольными числами . На основании утверждения 2) §4 (правила решения систем) числа удовлетворяют и остальным уравнениям системы (2"), т. е. числа , (не все равные нулю) удовлетворяют остальным уравнениям системы (2").

Таким образом, векторы линейно зависимы, и теорема доказана и в этом случае.

Определение 1 . Линейной комбинацией векторовназывается сумма произведений этих векторов на скаляры:

Определение 2 . Система векторовназывается линейно зависимой системой, если линейная комбинация их (2.8) обращается в нуль:

причем среди чиселсуществует хотя бы одно, отличное от нуля.

Определение 3 . Векторыназываются линейно независимыми, если их линейная комбинация (2.8) обращается в нуль лишь в случае, когда все числа.

Из этих определений можно получить следующие следствия.

Следствие 1 . В линейно зависимой системе векторов хотя бы один вектор может быть выражен как линейная комбинация остальных.

Доказательство . Пусть выполнено (2.9) и пусть для определенности, коэффициент. Имеем тогда:. Заметим, что справедливо и обратное утверждение.

Следствие 2. Если система векторовсодержит нулевой вектор, то эта система (обязательно) линейно зависима – доказательство очевидно.

Следствие 3 . Если средиn векторовкакие либоk () векторов линейно зависимы, то и всеn векторов линейно зависимы (опустим доказательство).

2 0 . Линейные комбинации двух, трех и четырех векторов . Рассмотрим вопросы линейной зависимости и независимости векторов на прямой, плоскости и в пространстве. Приведем соответствующие теоремы.

Теорема 1 . Для того чтобы два вектора были линейно зависимы, необходимо и достаточно, чтобы они были коллинеарны.

Необходимость . Пусть векторыилинейно зависимы. Это означает, что их линейная комбинация=0 и (ради определенности). Отсюда следует равенство, и (по определению умножения вектора на число) векторыиколлинеарны.

Достаточность . Пусть векторыиколлинеарны (║) (предполагаем, что они отличны от нулевого вектора; иначе их линейная зависимость очевидна).

По теореме (2.7) (см. §2.1,п.2 0) тогдатакое, что, или– линейная комбинация равна нулю, причем коэффициент приравен 1 – векторыилинейно зависимы.

Из этой теоремы вытекает следующее следствие.

Следствие . Если векторыине коллинеарны, то они линейно независимы.

Теорема 2 . Для того чтобы три вектора были линейно зависимы, необходимо и достаточно, чтобы они были компланарны.

Необходимость . Пусть векторы,илинейно зависимы. Покажем, что они компланарны.

Из определения линейной зависимости векторов следует существование чисел итаких, что линейная комбинация, и при этом (для определенности). Тогда из этого равенства можно выразить вектор:=, то есть векторравен диагонали параллелограмма, построенного на векторах, стоящих в правой части этого равенства (рис.2.6). Это означает, что векторы,илежат в одной плоскости.

Достаточность . Пусть векторы,икомпланарны. Покажем, что они линейно зависимы.

Исключим случай коллинеарности какой либо пары векторов (ибо тогда эта пара линейно зависима и по следствию 3 (см.п.1 0) все три вектора линейно зависимы). Заметим, что такое предположение исключает также существование нулевого вектора среди указанных трех.

Перенесем три компланарных вектора в одну плоскость и приведем их к общему началу. Через конец вектора проведем прямые, параллельные векторами; получим при этом векторыи(рис.2.7) – их существование обеспечено тем, что векторыине коллинеарные по предположению векторы. Отсюда следует, что вектор=+. Переписав это равенство в виде (–1)++=0, заключаем, что векторы,илинейно зависимы.

Из доказанной теоремы вытекает два следствия.

Следствие 1 . Пустьине коллинеарные векторы, вектор– произвольный, лежащий в плоскости, определяемой векторамии, вектор. Существуют тогда числаитакие, что

Следствие 2 . Если векторы,ине компланарны, то они линейно независимы.

Теорема 3 . Любые четыре вектора линейно зависимы.

Доказательство опустим; с некоторыми изменениями оно копирует доказательство теоремы 2. Приведем следствие из этой теоремы.

Следствие . Для любых некомпланарных векторов,,и любого вектораитакие, что

Замечание . Для векторов в (трехмерном) пространстве понятия линейной зависимости и независимости имеют, как это следует из приведенных выше теорем 1-3, простой геометрический смысл.

Пусть имеются два линейно зависимых вектора и. В таком случае один из них является линейной комбинацией второго, то есть просто отличается от него численным множителем (например,). Геометрически это означает, что оба вектора находятся на общей прямой; они могут иметь одинаковое или противоположное направления (рис.2.8 хх).

Если же два вектора расположены под углом друг к другу (рис.2.9 хх), то в этом случае нельзя получить один из них умножением другого на число – такие векторы линейно независимы. Следовательно, линейная независимость двух векторов иозначает, что эти векторы не могут быть уложены на одну прямую.

Выясним геометрический смысл линейной зависимости и независимости трех векторов.

Пусть векторы ,илинейно зависимы и пусть (для определенности) векторявляется линейной комбинацией векторови, то есть расположен в плоскости, содержащей векторыи. Это означает, что векторы,илежат в одной плоскости. Справедливо и обратное утверждение: если векторы,илежат в одной плоскости, то они линейно зависимы.

Таким образом, векторы ,илинейно независимы в том и только в том случае, если они не лежат в одной плоскости.

3 0 . Понятие базиса . Одним из важнейших понятий линейной и векторной алгебры является понятие базиса. Введем определения.

Определение 1 . Пара векторов называется упорядоченной, если указано, какой вектор этой пары считается первым, а какой вторым.

Определение 2. Упорядоченная пара,неколлинеарных векторов называется базисом на плоскости, определяемой заданными векторами.

Теорема 1 . Всякий векторна плоскости может быть представлен как линейная комбинация базисной системы векторов,:

и это представление единственно.

Доказательство . Пусть векторыиобразуют базис. Тогда любой векторможно представить в виде.

Для доказательства единственности предположим, что имеется еще одно разложение . Имеем тогда=0, причем хотя бы одна из разностей отлична от нуля. Последнее означает, что векторыилинейно зависимы, то есть коллинеарны; это противоречит утверждению, что они образуют базис.

Но тогда – разложение единственно.

Определение 3 . Тройка векторов называется упорядоченной, если указано, какой вектор ее считается первым, какой вторым, а какой третьим.

Определение 4 . Упорядоченная тройка некомпланарных векторов называется базисом в пространстве.

Здесь также справедлива теорема разложения и единственности.

Теорема 2 . Любой векторможет быть представлен как линейная комбинация базисной системы векторов,,:

и это представление единственно (опустим доказательство теоремы).

В разложениях (2.12) и (2.13) величины называются координатами векторав заданном базисе (точнее, аффинными координатами).

При фиксированном базисе иможно писать.

Например, если задан базис и дано, что, то это означает, что имеет место представление (разложение).

4 0 . Линейные операции над векторами в координатной форме . Введение базиса позволяет линейные операции над векторами заменить обычными линейными операциями над числами – координатами этих векторов.

Пусть задан некоторый базис . Очевидно, задание координат вектора в этом базисе полностью определяет сам вектор. Имеют место следующие предложения:

а) два вектора иравны тогда и только тогда, когда равны их соответственные координаты:

б) при умножении вектора на числоего координаты умножаются на это число:

в) при сложении векторов складываются их соответственные координаты:

Доказательства этих свойств опустим; докажем лишь для примера свойство б). Имеем

Замечание . В пространстве (на плоскости) можно выбрать бесконечно много базисов.

Приведем пример перехода от одного базиса к другому, установим соотношения между координатами вектора в различных базисах.

Пример 1 . В базисной системезаданы три вектора:,и. В базисе,,векторимеет разложение. Найти координаты векторав базисе.

Решение . Имеем разложения:,,; следовательно,=+2+= =, то естьв базисе.

Пример 2 . Пусть в некотором базисечетыре вектора заданы своими координатами:,,и.

Выяснить, образуют ли векторы базис; в случае положительного ответа найти разложение векторав этом базисе.

Решение . 1) векторы образуют базис, если они линейно независимы. Составим линейную комбинацию векторов() и выясним, при какихиона обращается в нуль:=0. Имеем:

По определению равенства векторов в координатной форме получим следующую систему (линейных однородных алгебраических) уравнений: ;;, определитель которой=1, то есть система имеет (лишь) тривиальное решение. Это означает линейную независимость векторови, следовательно, они образуют базис.

2) разложим вектор в этом базисе. Имеем:=или в координатной форме.

Переходя к равенству векторов в координатной форме, получим систему линейных неоднородных алгебраических уравнений: ;;. Решая ее (например, по правилу Крамера), получим:,,и (). Имеем разложение векторав базисе:=.

5 0 . Проекция вектора на ось. Свойства проекций. Пусть имеется некоторая осьl , то есть прямая с выбранным на ней направлением и пусть задан некоторый вектор.Определим понятие проекции векторана осьl .

Определение . Проекцией векторана осьl называется произведение модуля этого вектора на косинус угла между осьюl и вектором (рис.2.10):

Следствием этого определения является утверждение о том, что равные векторы имеют равные проекции (на одну и ту же ось).

Отметим свойства проекций.

1) проекция суммы векторов на некоторую ось l равна сумме проекций слагаемых векторов на ту же ось:

2) проекция произведения скаляра на вектор равна произведению этого скаляра на проекцию вектора на ту же ось:

Следствие . Проекция линейной комбинации векторов на ось равна линейной комбинации их проекций:

Доказательства свойств опустим.

6 0 . Прямоугольная декартова система координат в пространстве .Разложение вектора по ортам осей. Пусть в качестве базиса выбраны три взаимно перпендикулярных орта; для них вводим специальные обозначения. Поместив их начала в точкуO , направим по ним (в соответствии с ортами) координатные осиOx ,Oy иOz (ось с выбранным на ней положительным направлением, началом отсчета и единицей длины называется координатной осью).

Определение . Упорядоченная система трех взаимно перпендикулярных координатных осей с общим началом и общей единицей длины называется прямоугольной декартовой системой координат в пространстве.

Ось Ox называется осью абсцисс,Oy – осью ординат иOz осью аппликат.

Займемся разложением произвольного вектора по базису . Из теоремы (см.§2.2,п.3 0 , (2.13)) следует, чтоможет быть и единственным образом разложен по базису(здесь вместо обозначения координатупотребляют):

В (2.21) суть (декартовы прямоугольные) координаты вектора. Смысл декартовых координат устанавливает следующая теорема.

Теорема . Декартовы прямоугольные координатывектораявляются проекциями этого вектора соответственно на осиOx ,Oy иOz .

Доказательство. Поместим векторв начало системы координат – точкуO . Тогда его конец будет совпадать с некоторой точкой.

Проведем через точку три плоскости, параллельные координатным плоскостямOyz ,Oxz иOxy (рис.2.11 хх). Получим тогда:

В (2.22) векторы иназываются составляющими векторапо осямOx ,Oy иOz .

Пусть через иобозначены соответственно углы, образованные векторомс ортами. Тогда для составляющих получим следующие формулы:

= =, = =, = =(2.23)

Из (2.21), (2.22) (2.23) находим:

– координаты вектораесть проекции этого вектора на координатные осиOx ,Oy иOz соответственно.

Замечание . Числаназываются направляющими косинусами вектора.

Модуль вектора (диагональ прямоугольного параллелепипеда) вычисляется по формуле:

Из формул (2.23) и (2.24) следует, что направляющие косинусы могут быть вычислены по формулам:

Возводя обе части каждого из равенств в (2.25) и складывая почленно левые и правые части полученных равенств, придем к формуле:

– не любые три угла образуют некоторое направление в пространстве, но лишь те, косинусы которых связаны соотношением (2.26).

7 0 . Радиус-вектор и координаты точки .Определение вектора по его началу и концу . Введем определение.

Определение . Радиусом-вектором (обозначается) называется вектор, соединяющий начало координатO с этой точкой (рис.2.12 хх):

Любой точке пространства соответствует определенный радиус-вектор (и обратно). Таким образом, точки пространства представляются в векторной алгебре их радиус-векторами.

Очевидно, координаты точкиM являются проекциями ее радиус-векторана координатные оси:

и, таким образом,

– радиус-вектор точки есть вектор, проекции которого на оси координат равны координатам этой точки. Отсюда следует две записи: и.

Получим формулы для вычисления проекций вектора по координатам его начала – точкеи конца – точке.

Проведем радиус-векторы и вектор(рис.2.13). Получим, что

– проекции вектора на координатные орты равны разностям соответствующих координат конца и начала вектора.

8 0 . Некоторые задачи на декартовы координаты .

1) условия коллинеарности векторов . Из теоремы (см.§2.1,п.2 0 , формула (2.7)) следует, что для коллинеарности векторовинеобходимо и достаточно, чтобы выполнялось соотношение:=. Из этого векторного равенства получаем три в координатной форме равенства:, откуда следует условие коллинеарности векторов в координатной форме:

– для коллинеарности векторов инеобходимо и достаточно, чтобы их соответствующие координаты были пропорциональны.

2) расстояние между точками . Из представления (2.29) следует, что расстояниемежду точкамииопределяется формулой

3) деление отрезка в данном отношении . Пусть даны точкиии отношение. Нужно найти– координаты точкиM (рис.2.14).

Имеем из условия коллинеарности векторов: , откудаи

Из (2.32) получим в координатной форме:

Из формул (2.32’) можно получить формулы для вычисления координат середины отрезка , полагая:

Замечание . Будем считать отрезкииположительными или отрицательными в зависимости от того, совпадает их направление с направлением от началаотрезка к концу, или не совпадает. Тогда по формулам (2.32) – (2.32”) можно находить координат точки, делящей отрезоквнешним образом, то есть так, что делящая точкаM находится на продолжении отрезка, а не внутри его. При этом конечно,.

4) уравнение сферической поверхности . Составим уравнение сферической поверхности – геометрического места точек, равноудаленных на расстояниеот некоторого фиксированного центра – точки. Очевидно, что в данном случаеи с учетом формулы (2.31)

Уравнение (2.33) и есть уравнение искомой сферической поверхности.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама