THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Содержащее единицу, называется кольцом с единицей . Обозначается единица, как правило, цифрой «1» (что отражает таковые свойства одноимённого числа) или иногда (например, в матричной алгебре), латинской буквой I или E .

Разные определения алгебраических объектов могут как требовать наличие единицы, так и оставлять её необязательным элементом. Односторонний нейтральный элемент единицей не называется. Единица единственна по общему свойству двустороннего нейтрального элемента.

Иногда единицами кольца называют его обратимые элементы , что может вносить путаницу.

Единица, нуль и теория категорий

Единица является единственным элементом кольца как идемпотентным, так и обратимым.

Обратимость

Обратимым называется всякий элемент u кольца с единицей, являющийся двусторонним делителем единицы, то есть:

∃ v 1: v 1 u = 1 {\displaystyle \exists v_{1}:v_{1}\,u=1} ∃ v 2: u v 2 = 1 {\displaystyle \exists v_{2}:u\,v_{2}=1} (a 1 + μ 1 1) (a 2 + μ 2 1) = a 1 a 2 + μ 1 a 2 + μ 2 a 1 + μ 1 μ 2 1 {\displaystyle (a_{1}+\mu _{1}{\mathbf {1} })(a_{2}+\mu _{2}{\mathbf {1} })=a_{1}a_{2}+\mu _{1}a_{2}+\mu _{2}a_{1}+\mu _{1}\mu _{2}{\mathbf {1} }}

с сохранением таких свойств как ассоциативность и коммутативность умножения. Элемент 1 будет являться единицей расширенной алгебры. Если в алгебре уже была единица, то после расширения она превратится в необратимый идемпотент.

С кольцом такое тоже можно проделать, например потому, что всякое кольцо является ассоциативной алгеброй над

Пусть (K,+, ·) - кольцо. Так как (K, +) - абелева группа, учитывая свойства групп получим

СВ-ВО 1 . Во всяком кольце (K,+, ·) имеется единственный нулевой элемент 0 и для всякого a ∈ K имеется единственный противоположный ему элемент −a.

СВ-ВО 2. ∀ a, b, c ∈ K (a + b = a + c ⇒ b = c).

СВ-ВО 3. Для любых a, b ∈ K в кольце K существует единственная разность a − b, причем a − b = a + (−b). Таким образом, в кольце K определена операция вычитания, при этом она обладает свойствами 1′-8′.

СВ-ВО 4 . Операция умножения в K дистрибутивна относительно операции вычитания, т.е. ∀ a, b, c ∈ K ((a − b)c = ac − bc ∧ c(a − b) = ca − cb).

Док-во. Пусть a, b, c ∈ K. Учитывая дистрибутивность операции · в K относительно операции + и определение разности элементов кольца, получим (a − b)c + bc = ((a − b) + b)c = ac, откуда по определению разности следует, что (a − b)c = ac − bc.

Аналогично доказывается правый закон дистрибутивности операции умножения относительно операции вычитания.

СВ-В 5. ∀ a ∈ K a0 = 0a = 0.

Доказательство. Пусть a ∈ K и b-произвольный элемент из K. Тогда b − b = 0 и поэтому, учитывая предыдущее свойство, получим a0 = a(b − b) = ab − ab = 0.

Аналогично доказывается, что 0a = 0.

СВ-ВО 6. ∀ a, b ∈ K (−a)b = a(−b) = −(ab).

Доказательство. Пусть a, b ∈ K. Тогда (−a)b + ab = ((−a) + a)b =

0b = 0. Значит, (−a)b = −(ab).

Аналогично доказывается равенство a(−b) = −(ab).

СВ-ВО 7. ∀ a, b ∈ K (−a)(−b) = ab.

Доказательство. В самом деле, применяя дважды предыдущее свойство, получим (−a)(−b) = −(a(−b)) = −(−(ab)) = ab.

ЗАМЕЧАНИЕ. Свойства 6 и 7 называют правилами знаков в кольце.

Из дистрибутивности операции умножения в кольце K относительно операции сложения и свойств 6 и 7 вытекает следующее

СВ-ВО 8. Пусть k, l-произвольные целые числа. Тогда ∀ a, b ∈ K (ka)(lb) = (kl)ab.

Подкольцо

Подкольцом кольца (K,+, ·) называется подмножество H множества K, которое замкнуто относительно операций + и ·, определенных в K, и само является кольцом относительно этих операций.

Примеры подколец:

Так, Z -подкольцо кольца (Q,+, ·), Q-подкольцо кольца (R,+, ·), Rn×n -подкольцо кольца (Cn×n,+, ·), Z[x]-подкольцо кольца (R[x],+, ·), D -подкольцо кольца (C,+, ·).

Во всяком кольце (K,+, ·) само множество K, а также одноэлементное подмножество {0} являются подкольцами кольца (K,+, ·). Это так называемые тривиальные подкольца кольца (K,+, ·).

Простейшие свойства подколец.

Пусть H - подкольцо кольца (K,+, ·), т.е. (H,+, ·) само является кольцом. Значит, (H, +)-группа, т.е. H -подгруппа группы (K, +). Поэтому справедливы следующие утверждения.

СВ-ВО 1. Нулевой элемент подкольца H кольца K совпадает с нулевым элементом кольца K.

СВ-ВО 2 . Для всякого элемента a подкольца H кольца K противоположный ему элемент в H совпадает с −a, т.е. с противоположным ему элементом в K.

СВ-ВО 3. Для любых элементов a и b подкольца H их разность в H совпадает с элементом a − b, т.е. с разностью этих элементов в K.

Признаки подкольца.

ТЕОРЕМА 1 (первый признак подкольца).

Непустое подмножество H кольца K с операциями + и · является подкольцом кольцаK тогда итолькотогда, когда оно удовлетворяет следующим условиям:

∀ a, b ∈ H a + b ∈ H, (1)

∀ a ∈ H − a ∈ H, (2)

∀ a, b ∈ H ab ∈ H. (3)

Необходимость. Пусть H - подкольцо кольца (K,+, ·). Тогда H -подгруппа группы (K, +). Поэтому по первому признаку подгруппы (в аддитивной формулировке), H удовлетворяет условиям (1) и (2). Кроме того, H замкнуто относительно операции умножения, определенной в K, т.е. H

удовлетворяет и условию (3).

Достаточность. Пусть H ⊂ K, H 6= ∅ и H удовлетворяет условиям (1) − (3). Из условий (1) и (2) по первому признаку подгруппы следует, что H -подгруппа группы (K, +), т.е. (H, +)-группа. При этом, так как (K, +)-абелева группа, (H, +) также абелева. Кроме того, из условия (3) следует, что умножение является бинарной операцией на множестве H. Ассоциативность операции · в H и ее дистрибутивность относительно операции + следуют из того, что такими свойствами обладают операции + и · в K.

ТЕОРЕМА 2 (второй признак подкольца).

Непустое подмножество H кольца K с операциями + и · является

подкольцом кольца K т. и т. т, когда оно удовлетворяет следующим условиям:

∀ a, b ∈ H a − b ∈ H, (4)

∀ a, b ∈ H ab ∈ H. (5)

Доказательство этой теоремы аналогично доказательству теоремы 1.

При этом используется теорема 2′ (второй признак подгруппы в аддитивной формулировке) и замечание к ней.

7.Поле (определение, виды, свойства, признаки).

Полем называется коммутативное кольцо с единицей e не равно 0, в котором всякий элемент, отличный отнуля имеет обратный.

Классическими примерами числовых полей являются поля (Q,+, ·), (R,+, ·), (C,+, ·).

СВОЙСТВО 1. Во всяком поле F справедлив закон сокращения

на общий множитель, отличный от нуля, т.е.

∀ a, b, c ∈ F (ab = ac ∧ a не равно 0 ⇒ b = c).

СВОЙСТВО 2. Во всяком поле F нет делителей нуля.

СВОЙСТВО 3. Кольцо (K,+, ·) является полем тогда и только

тогда, когда множество K \ {0} есть коммутативная группа относительно операции умножения.

СВОЙСТВО 4 . Конечное ненулевое коммутативное кольцо (K,+, ·) без делителей нуля является полем.

Частное элементов поля.

Пусть (F,+, ·)-поле.

Частным элементов a и b поля F, где b не равно 0,

называется такой элемент c ∈ F, что a = bc.

СВОЙСТВО 1. Для любых элементов a и b поля F, где b не равно 0, существует единственное частное a/b, причем a/b= ab−1.

СВОЙСТВО 2. ∀ a ∈ F \ {0}

a/a= e и ∀ a ∈ F a/e= a.

СВОЙСТВО 3. ∀ a, c ∈ F ∀ b, d ∈ F \ {0}

a/b=c/d ⇔ ad = bc.

СВОЙСТВО 4. ∀ a, c ∈ F ∀ b, d ∈ F \ {0}

СВОЙСТВО 5. ∀ a ∈ F ∀ b, c, d ∈ F \ {0}

(a/b)/(c/d)=ad/bc

СВОЙСТВО 6. ∀ a ∈ F ∀ b, c ∈ F \ {0}

СВОЙСТВО 7. ∀ a ∈ F ∀ b, c ∈ F \ {0}

СВОЙСТВО 8. ∀ a, b ∈ F ∀ c ∈ F \ {0}

Поле F, единица которого имеет конечный порядок p в группе (F, +)p.

Поле F единица, которого имеет бесконечный порядок в группе (F, +), называется полем характеристики 0.

8. Подполе (определение, виды, свойства, признаки)

Подполем поля (F,+, ·) называется подмножество S множества F, которое замкнуто относительно операций + и ·, определенных в F, и само является полем относительно этих операций.

Приведем некоторые примеры подполей Q-подполе поля (R,+, ·);

R-подполе поля (C,+, ·);

справедливы следующие утверждения.

СВОЙСТВО 1. Нулевой элемент подполя S поля F совпадает с

нулевым элементом поля F.

СВОЙСТВО 2 . Для всякого элемента a подполя S поля F противоположный ему элемент в S совпадает с −a, т.е. с противоположным ему элементом в F.

СВОЙСТВО 3. Для любых элементов a и b подполя S поля F их

разность в S совпадает с a−b т.е. с разностью этих элементов в F.

СВОЙСТВО 4. Единица подполя S поля F совпадает с единицей

e поля F.

СВОЙСТВО 5 . Для всякого элемента a подполя S поля F, от-

личного от нуля, обратный к нему элемент в S совпадает с a−1, т.е. с элементом, обратным к a в F.

Признаки подполя.

ТЕОРЕМА 1 (первый признак подполя).

Подмножество H поля F c операциями +, ·, содержащее ненулевой

(F,+, ·)

∀ a, b ∈ H a + b ∈ H, (1)

∀ a ∈ H − a ∈ H, (2)

∀ a, b ∈ H ab ∈ H, (3)

∀ a ∈ H \ {0} a−1 ∈ H. (4)

ТЕОРЕМА2 (второй признак подполя).

Подмножество H поля F c операциями +, ·, содержащее ненулевой

элемент, является подполем поля (F,+, ·) тогда и только тогда, когда оно удовлетворяет следующим условиям:

∀ a, b ∈ H a − b ∈ H, (5)

∀ a ∈ H ∀ b ∈ H\{0} a/b ∈ H. (6)

10. Отношение делимости в кольце Z

Утверждение: для любых элементов a,b,c коммутативного кольца на множестве R, справедливы следующие импликации:

1) а|b, b|c => a|c

2) a|b, a|c => a| (b c)

3) a|b => a|bc

для любого a, b Z справедливо:

2) a|b, b≠0 => |a|≤|b|

3)a|b и b|a ó |a|=|b|

Разделить с остатком целое число а на целое число b , значит найти такие целые числа q и r, что можно представить a=b*q + r, 0≤r≥|b|, где q – неполное частное, r- остаток

Теорема: Если a и b Z , b≠0, то а можно разделить на b с остатком,причем неполное частное и остаток определяются однозначно.

Следствие,если a и b Z , b≠0, то b|a ó

11. НОД и НОК

Наибольший общий делитель(НОД) чисел Z называется некоторое число d, удовлетворяющее следующим условиям

1) d является общим делителем т.е. d| , d| …d|

2) d делится на любой общий делитель чисел т.е. d| , d| …d| => d| , d| …d|

Определение 4.1.1. Кольцо (K , +, ) – это алгебраическая система с непустым множеством K и двумя бинарными алгебраическими операциями на нем, которые будем называть сложением и умножением . Кольцо является абелевой аддитивной группой, а умножение и сложение связаны законами дистрибутивности: (a + b )  c = a c + b c и с  (a + b ) = c a + c b для произвольных a , b , c K .

Пример 4.1.1. Приведем примеры колец.

1. (Z , +, ), (Q , +, ), (R , +, ), (C , +, ) – соответственно кольца целых, рациональных, вещественных и комплексных чисел с обычными операциями сложения и умножения. Данные кольца называются числовыми .

2. (Z / n Z , +, ) – кольцо классов вычетов по модулю n N с операциями сложения и умножения.

3. Множество M n (K ) всех квадратных матриц фиксированного порядка n N с коэффициентами из кольца (K , +, ) с операциями матричного сложения и умножения. В частности, K может быть равно Z , Q , R , C или Z /n Z приn N .

4. Множество всех вещественных функций, определенных на фиксированном интервале (a ; b ) вещественной числовой оси, с обычными операциями сложения и умножения функций.

5. Множество полиномов (многочленов) K [x ] с коэффициентами из кольца (K , +, ) от одной переменной x с естественными операциями сложения и умножения полиномов. В частности, кольца полиномов Z [x ], Q [x ], R [x ], C [x ], Z /n Z [x ] приn N .

6. Кольцо векторов (V 3 (R ), +, ) c операциями сложения и векторного умножения.

7. Кольцо ({0}, +, ) с операциями сложения и умножения: 0 + 0 = 0, 0  0 = = 0.

Определение 4.1.2. Различают конечные и бесконечные кольца (по числу элементов множества K ), но основная классификация ведется по свойствам умножения. Различают ассоциативные кольца, когда операция умножения ассоциативна (пункты 1–5, 7 примера 4.1.1) и неассоциативные кольца (пункт 6 примера 4.1.1: здесь , ). Ассоциативные кольца делятся на кольца с единицей (есть нейтральный элемент относительно умножения) и без единицы , коммутативные (операция умножения коммутативна) и некоммутативные .

Теорема 4.1.1. Пусть (K , +, ) – ассоциативное кольцо с единицей. Тогда множество K * обратимых относительно умножения элементов кольца K – мультипликативная группа.

Проверим выполнение определения группы 3.2.1. Пусть a , b K * . Покажем, что a b K * .  (a b ) –1 = b –1  а –1  K . Действительно,

(a b )  (b –1  а –1) = a  (b b –1)  а –1 = a  1  а –1 = 1,

(b –1  а –1)  (a b ) = b –1  (а –1  a )  b = b –1  1  b = 1,

где а –1 , b –1  K – обратные элементы к a и b соответственно.

1) Умножение в K * ассоциативно, так как K – ассоциативное кольцо.

2) 1 –1 = 1: 1  1 = 1  1  K * , 1 – нейтральный элемент относительно умножения в K * .

3) Для  a K * , а –1  K * , так как (а –1)  a = a  (а –1) = 1
(а –1) –1 = a .

Определение 4.1.3. Множество K * обратимых относительно умножения элементов кольца (K , +, ) называют мультипликативной группой кольца .

Пример 4.1.2. Приведем примеры мультипликативных групп различных колец.

1. Z * = {1, –1}.

2. M n (Q ) * = GL n (Q ), M n (R ) * = GL n (R ), M n (C ) * = GL n (C ).

3. Z /n Z * – множество обратимых классов вычетов, Z /n Z * = { | (k , n ) = 1, 0  k < n }, при n > 1 | Z /n Z * | = (n ), где – функция Эйлера.

4. {0} * = {0}, так как в данном случае 1 = 0.

Определение 4.1.4. Если в ассоциативном кольце (K , +, ) с единицей группа K * = K \{0}, где 0 – нейтральный элемент относительно сложения, то такое кольцо называют телом или алгеброй с делением . Коммутативное тело называется полем .

Из данного определения очевидно, что в теле K *   и 1  K * , значит, 1  0, поэтому минимальное тело, являющееся полем, состоит из двух элементов: 0 и 1.

Пример 4.1.3.

1. (Q , +, ), (R , +, ), (C , +, ) – соответственно числовые поля рациональных, вещественных и комплексных чисел.

2. (Z /p Z , +, ) – конечное поле из p элементов, если p – простое число. Например, (Z /2Z , +, ) – минимальное поле из двух элементов.

3. Некоммутативным телом является тело кватернионов – совокупность кватернионов, то есть выражений вида h = a + bi + cj + dk , где a , b , c , d R , i 2 = = j 2 = k 2 = –1, i j = k = – j i , j k = i = – k j , i k = – j = – k i , с операциями сложения и умножения. Кватернионы складываются и перемножаются почленно с учетом указанных выше формул. Для всякого h  0 обратный кватернион имеет вид:
.

Различают кольца с делителями нуля и кольца без делителей нуля.

Определение 4.1.5. Если в кольце найдутся ненулевые элементы a и b такие, что a b = 0, то их называют делителями нуля , а само кольцо – кольцом с делителями нуля . В противном случае кольцо называется кольцом без делителей нуля .

Пример 4.1.4.

1. Кольца (Z , +, ), (Q , +, ), (R , +, ), (C , +, ) – кольца без делителей нуля.

2. В кольце (V 3 (R ), +, ) каждый отличный от нуля элемент является делителем нуля, поскольку
для всех
V 3 (R ).

3. В кольце матриц M 3 (Z ) примерами делителей нуля являются матрицы
и
, так как A B = O (нулевая матрица).

4. В кольце (Z / n Z , +, ) с составным n = k m , где 1 < k , m < n , классы вычетов и являются делителями нуля, так как .

Ниже приведем основные свойства колец и полей.

Аннотация: В данной лекции рассматриваются понятия колец. Приведены основные определения и свойства элементов кольца, рассмотрены ассоциативные кольца. Рассмотрен ряд характерных задач, доказаны основные теоремы, а также приведены задачи для самостоятельного рассмотрения

Кольца

Множество R с двумя бинарными операциями (сложением + и умножением ) называется ассоциативным кольцом с единицей , если:

Если операция умножения коммутативна, то кольцо называется коммутативным кольцом. Коммутативные кольца являются одним из главных объектов изучения в коммутативной алгебре и алгебраической геометрии.

Замечания 1.10.1 .

Примеры 1.10.2 (примеры ассоциативных колец) .

Мы уже убедились, что группа вычетов (Z n ,+)={C 0 ,C 1 ,...,C n-1 }, C k =k+nZ , по модулю n с операцией сложения , является коммутативной группой (см. пример 1.9.4, 2)).

Определим операцию умножения, полагая . Проверим корректность этой операции . Если C k =C k" , C l =C l" , то k"=k+nu , l"=l+nv , , и поэтому C k"l" =C kl .

Так как (C k C l)C m =C (kl)m =C k(lm) =C k (C l C m), C k C l =C kl =C lk =C l C k , C 1 C k =C k =C k C 1 , (C k +C l)C m =C (k+l)m =C km+lm =C k C m +C l C m , то является ассоциативным коммутативным кольцом с единицей C 1 кольцом вычетов по модулю n ).

Свойства колец (R,+,.)

Лемма 1.10.3 (бином Ньютона) . Пусть R - кольцо с 1 , , . Тогда:

Доказательство.

Определение 1.10.4 . Подмножество S кольца R называется подкольцом , если:

а) S - подгруппа относительно сложения в группе (R,+) ;

б)для имеем ;

в)для кольца R с 1 предполагается, что .

Примеры 1.10.5 (примеры подколец) .

Задача 1.10.6 . Описать все подкольца в кольце вычетов Z n по модулю n .

Замечание 1.10.7 . В кольце Z 10 элементы, кратные 5 , образуют кольцо с 1 , не являющееся подкольцом в Z 10 (у этих колец различные единичные элементы).

Определение 1.10.8 . Если R - кольцо, и , , ab=0 , то элемент a называется левым делителем нуля в R , элемент b называется правым делителем нуля в R .

Замечание 1.10.9 . В коммутативных кольцах, естественно, нет различий между левыми и правыми делителями нуля.

Пример 1.10.10 . В Z , Q , R нет делителей нуля.

Пример 1.10.11 . Кольцо непрерывных функций C имеет делители нуля. Действительно, если


то , , fg=0 .

Пример 1.10.12 . Если n=kl , 1

Лемма 1.10.13 . Если в кольце R нет (левых) делителей нуля, то из ab=ac , где , , следует, что b=c (т. е. возможность сокращать на ненулевой элемент слева, если нет левых делителей нуля; и справа, если нет правых делителей нуля).

Доказательство. Если ab=ac , то a(b-c)=0 . Так как a не является левым делителем нуля, то b-c=0 , т. е. b=c .

Определение 1.10.14 . Элемент называется нильпотентным , если x n =0 для некоторого . Наименьшее такое натуральное число n называется степенью нильпотентности элемента .

Ясно, что нильпотентный элемент является делителем нуля (если n>1 , то , ). Обратное утверждение неверно (в Z 6 нет нильпотентных элементов, однако 2 , 3 , 4 - ненулевые делители нуля).

Упражнение 1.10.15 . Кольцо Z n содержит нильпотентные элементы тогда и только тогда, когда n делится на m 2 , где , .

Определение 1.10.16 . Элемент x кольца R называется идемпотентом , если x 2 =x . Ясно, что 0 2 =0 , 1 2 =1 . Если x 2 =x и , , то x(x-1)=x 2 -x=0 , и поэтому нетривиальные идемпотенты являются делителями нуля.

Через U(R) обозначим множество обратимых элементов ассоциативного кольца R , т. е. тех , для которых существует обратный элемент s=r -1 (т. е. rr -1 =1=r -1 r ).

называется порядком элемента а. Если такого n не существует, то элемент а называется элементом бесконечного порядка.

Теорема 2.7 (малая теорема Ферма). Если a G и G конечная группа, то a |G| =e .

Примем без доказательства.

Напомним, что каждая группа G, ° является алгеброй с одной бинарной операцией, для которой выполняются три условия, т.е. указанные аксиомы группы.

Подмножество G 1 множества G с той же операцией, что и в группе, называется подгруппой, если G 1 , ° является группой.

Можно доказать, что непустое подмножество G 1 множества G является подгруппой группы G, ° тогда и только тогда, когда множество G 1 вместе с любыми элементами а и b содержит элемент а° b -1 .

Можно доказать следующую теорему.

Теорема 2.8 . Подгруппа циклической группы является циклической.

§ 7. Алгебра с двумя операциями. Кольцо

Рассмотрим алгебры с двумя бинарными операциями.

Кольцом называется непустое множество R , на котором введены две бинарные операции + и ° , называемые сложением и умножением такие, что:

1) R; + является абелевой группой;

2) умножение ассоциативно, т.е. для a,b,c R: (a ° b ° ) ° c=a ° (b ° c) ;

3) умножение дистрибутивно относительно сложения, т.е. для

a,b,c R: a° (b+c)=(a° b)+(а ° c) и (а +b)° c= (a° c)+(b° c).

Кольцо называется коммутативным, если для a,b R: a ° b=b ° a .

Кольцо записываем как R; +, ° .

Так как R является абелевой (коммутативной) группой относительно сложения, то она имеет аддитивную единицу, которую обозначают через 0 или θ и называют нулем. Аддитивную обратную для a R обозначают через -а. При этом в любом кольце R имеем:

0 +x=x+ 0 =x, x+(-x)=(-x)+x=0 , -(-x)=x.

Тогда получаем, что

x° y=x° (y+ 0 )=x° y+ x° 0 x° 0 =0 для х R; x° y=(х + 0 )° y=x° y+ 0 ° y 0 ° y=0 для y R.

Итак, мы показали, что для х R: x ° 0 = 0° х = 0. Однако из равенства x ° y=0 не следует, что х= 0 или у= 0. Покажем это на примере.

Пример. Рассмотрим множество непрерывных на отрезке функций. Введем для этих функций обычные операции сложения и умножения: f(x)+ ϕ (x) и f(x)· ϕ (x) . Как легко видеть, получим кольцо, которое обозначается C . Рассмотрим функцию f(x) и ϕ (x) , изображенные на рис. 2.3. Тогда получим, что f(x) ≡ / 0 и ϕ (x) ≡ / 0, но f(x)· ϕ (x) ≡0.

Мы доказали, что произведение равно нулю, если равен нулю один из множителей: a ° 0= 0 для a R и на примере показали, что может быть, что a ° b= 0 для a ≠ 0 и b ≠ 0.

Если в кольце R имеем, что a ° b= 0, то а называется левым, а b правым делителями нуля. Элемент 0 считаем тривиальным делителем нуля.

f(x)·ϕ(x)≡0

ϕ (x)

Коммутативное кольцо без делителей нуля, отличных от тривиального делителя нуля, называют целостным кольцом или областью целостности.

Легко видеть, что

0 =x° (y+(-y))=x° y+x° (-y), 0 =(x+(-x))° y=x° y+(-x)° y

и поэтому x ° (-y)=(-x) ° y является обратным элементом для элемента х° у, т.е.

х ° (-у ) = (-х )° у = -(х ° у ).

Аналогично можно показать, что (- х) ° (- у) = х° у.

§ 8. Кольцо с единицей

Если в кольце R существует единица относительно умножения, то эту мультипликативную единицу обозначают через 1.

Легко доказать, что мультипликативная единица (как и аддитивная) единственна. Мультипликативную обратную для a R (обратную по умножению) будем обозначать через а-1 .

Теорема 2.9 . Элементы 0 и 1 являются различными элементами ненулевого кольца R .

Доказательство. Пусть R содержит не только 0. Тогда для a ≠ 0 имеем а° 0= 0 и а° 1= а ≠ 0, откуда следует, что 0 ≠ 1, ибо если бы 0= 1, то и их произведения на а совпадали бы.

Теорема 2.10 . Аддитивная единица, т.е. 0, не имеет мультипликативного обратного.

Доказательство. а° 0= 0° а= 0 ≠ 1 для а R . Таким образом, ненулевое кольцо никогда не будет группой относительно умножения.

Характеристикой кольца R называют наименьшее натуральное число k

такое, что a + a + ... + a = 0 для всех a R . Характеристика кольца

k − раз

записывается k=char R . Если указанного числа k не существует, то полагаем char R= 0.

Пусть Z – множество всех целых чисел;

Q – множество всех рациональных чисел;

R – множество всех действительных чисел; С – множество всех комплексных чисел.

Каждое из множеств Z, Q, R, C с обычными операциями сложения и умножения является кольцом. Эти кольца являются коммутативными, с мультипликативной единицей, равной числу 1. Эти кольца не имеют делителей нуля, следовательно, являются областями целостности. Характеристика каждого из этих колец равна нулю.

Кольцо непрерывных на функций (кольцо C ) тоже является кольцом с мультипликативной единицей, которая совпадает с функцией, тождественно равной единице на . Это кольцо имеет делители нуля, поэтому не является областью целостности и char C= 0.

Рассмотрим ещё один пример. Пусть М - непустое множество и R= 2M - множество всех подмножеств множества М. На R введем две операции: симметрическую разность А+ В= А В (которую назовём сложением) и пересечение (которое назовём умножением). Можно убедиться, что получили

кольцо с единицей; аддитивной единицей этого кольца будет , а мультипликативной единицей кольца будет множество М. Для этого кольца при любом А, А R , имеем: А+ А = А А= . Следовательно, charR = 2.

§ 9. Поле

Полем называется коммутативное кольцо, у которого ненулевые элементы образуют коммутативную группу относительно умножения.

Приведем прямое определение поля, перечисляя все аксиомы.

Поле – это множество P с двумя бинарными операциями «+ » и «° », называемыми сложением и умножением, такими, что:

1) сложение ассоциативно: для a, b, c R: (a+b)+c=a+(b+c) ;

2) существует аддитивная единица: 0 P, что для a P: a+0 =0 +a=a;

3) существует обратный элемент по сложению: для a P (-a) P:

(-a)+a=a+(-a)=0;

4) сложение коммутативно: для a, b P: a+b=b+a ;

(аксиомы 1 – 4 означают, что поле есть абелева группа по сложению);

5) умножение ассоциативно: для a, b, c P: a ° (b ° c)=(a ° b) ° c ;

6) существует мультипликативная единица: 1 P , что для a P:

1 ° a=a° 1 =a;

7) для любого ненулевого элемента (a ≠ 0) существует обратный элемент по умножению: для a P, a ≠ 0, a -1 P: a -1 ° a = a ° a -1 = 1;

8) умножение коммутативно: для a,b P: a ° b=b ° a ;

(аксиомы 5 – 8 означают, что поле без нулевого элемента образует коммутативную группу по умножению);

9) умножение дистрибутивно относительно сложения: для a, b, c P: a° (b+c)=(a° b)+(a° c), (b+c) ° a=(b° a)+(c° a).

Примеры полей:

1) R;+, - поле вещественных чисел;

2) Q;+, - поле рациональных чисел;

3) C;+, - поле комплексных чисел;

4) пусть Р 2 ={0,1}. Определим, что 1 +2 0=0 +2 1=1,

1 +2 1=0, 0 +2 0=0, 1×0=0×1=0×0=0, 1×1=1. Тогда F 2 = P 2 ;+ 2 , является полем и называется двоичной арифметикой.

Теорема 2.11 . Если а ≠ 0, то в поле единственным образом разрешимо уравнение а° х=b .

Доказательство . a° x=b a-1 ° (a° x)=a-1 ° b (a-1 ° a)° x=a-1 ° b



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама