THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

(кроме 0 и 1) имеют минимум два делителя: 1 и самого себя. Числа, не имеющие других делителей, называются простыми числами . Числа, имеющие другие делители, называются составными (или сложными ) числами . Простых чисел - бесконечное множество. Ниже приведены простые числа, не превосходящие 200:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,

47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101,

103, 107, 109, 113, 127, 131, 137, 139, 149, 151,

157, 163, 167, 173, 179, 181, 191, 193, 197, 199.

Умножение — одно из четырёх основных арифметических действий, бинарная математическая операция, в которой один аргумент складывается столько раз, сколько показывает другой. В арифметике под умножением понимают краткую запись сложения указанного количества одинаковых слагаемых.

Например , запись 5*3 обозначает «сложить три пятёрки», то есть 5+5+5. Результат умножения называется произведением , а умножаемые числа — множителями или сомножителями . Первый множитель иногда называется «множимое ».

Всякое составное число можно разложить на простые множители. При любом способе получается одно и то же разложение, если не учитывать порядка записи множителей.

Разложение числа на множители (Факторизация).

Разложение на множители (факторизация) - перебор делителей — алгоритм факторизации или тестирования простоты числа путем полного перебора всех возможных потенциальных делителей.

Т.е., простым языком, факторизация - это название процесса разложения чисел на множители, выраженное научным языком.

Последовательность действий при разложении на простые множители:

1. Проверяем, не является ли предложенное число простым.

2. Если нет, то подбираем, руководствуясь признаками деления делитель, из простых чисел начиная с наименьшего (2, 3, 5 …).

3. Повторяем это действие до тех пор, пока частное не окажется простым числом.

Что значит разложить на простые множители? Как это сделать? Что можно узнать по разложению числа на простые множители? Ответы на эти вопросы иллюстрируются конкретными примерами.

Определения:

Простым называют число, которое имеет ровно два различных делителя.

Составным называют число, которое имеет более двух делителей.

Разложить натуральное число на множители - значит представить его в виде произведения натуральных чисел.

Разложить натуральное число на простые множители - значит представить его в виде произведения простых чисел.

Замечания:

  • В разложении простого числа один из множителей равен единице, а другой - самому этому числу.
  • Говорить о разложении единицы на множители не имеет смысла.
  • Составное число можно разложить на множители, каждый из которых отличен от 1.

Разложим число 150 на множители. Например, 150 - это 15 умножить на 10.

15 - это составное число. Его можно разложить на простые множители 5 и 3.

10 - это составное число. Его можно разложить на простые множители 5 и 2.

Записав вместо 15 и 10 их разложения на простые множители, мы получили разложение числа 150.

Число 150 можно по-другому разложить на множители. Например, 150 - это произведение чисел 5 и 30.

5 - число простое.

30 - это число составное. Его можно представить как произведение 10 и 3.

10 - число составное. Его можно разложить на простые множители 5 и 2.

Мы получили разложение числа 150 на простые множители другим способом.

Заметим, что первое и второе разложение одинаковы. Они отличаются только порядком следования множителей.

Принято записывать множители в порядке возрастания.

Всякое составное число можно разложить на простые множители единственным образом с точностью до порядка множителей.

При разложении больших чисел на простые множители используют запись в столбик:

Наименьшее простое число, на которое делится 216 - это 2.

Разделим 216 на 2. Получим 108.

Полученное число 108 делится на 2.

Выполним деление. Получим в результате 54.

Согласно признаку делимости на 2 число 54 делится на 2.

Выполнив деление, получим 27.

Число 27 заканчивается на нечетную цифру 7 . Оно

Не делится на 2. Следующее простое число - это 3.

Разделим 27 на 3. Получим 9. Наименьшее простое

Число, на которое делится 9, - это 3. Три - само является простым числом, оно делится на себя и на единицу. Разделим 3 на себя. В итоге мы получили 1.

  • Число делится лишь на те простые числа, которые входят в состав его разложения.
  • Число делится лишь на те составные числа, разложение которых на простые множители полностью в нем содержится.

Рассмотрим примеры:

4900 делится на простые числа 2, 5 и 7. (они входят в разложение числа 4900), но не делится, например, на 13.

11 550 75. Это так, потому что разложение числа 75 полностью содержится в разложении числа 11550.

В результате деления будет произведение множителей 2, 7 и 11.

11550 не делится на 4 потому, что в разложении четырех есть лишняя двойка.

Найти частное от деления числа a на число b, если эти числа раскладываются на простые множители следующим образом a=2∙2∙2∙3∙3∙3∙5∙5∙19; b=2∙2∙3∙3∙5∙19

Разложение числа b полностью содержится в разложении числа a.

Результат деления a на b - это произведение оставшихся в разложении числа a трех чисел.

Итак, ответ: 30.

Список литературы

  1. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика 6. - М.: Мнемозина, 2012.
  2. Мерзляк А.Г., Полонский В.В., Якир М.С. Математика 6 класс. - Гимназия. 2006.
  3. Депман И.Я., Виленкин Н.Я. За страницами учебника математики. - М.: Просвещение, 1989.
  4. Рурукин А.Н., Чайковский И.В. Задания по курсу математика 5-6 класс. - М.: ЗШ МИФИ, 2011.
  5. Рурукин А.Н., Сочилов С.В., Чайковский К.Г. Математика 5-6. Пособие для учащихся 6-х классов заочной школы МИФИ. - М.: ЗШ МИФИ, 2011.
  6. Шеврин Л.Н., Гейн А.Г., Коряков И.О., Волков М.В. Математика: Учебник-собеседник для 5-6 классов средней школы. - М.: Просвещение, Библиотека учителя математики, 1989.
  1. Интернет-портал Matematika-na.ru ().
  2. Интернет-портал Math-portal.ru ().

Домашнее задание

  1. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика 6. - М.: Мнемозина, 2012. № 127, № 129, № 141.
  2. Другие задания: № 133, № 144.

Разложить на множители большое число – нелегкая задача. Большинство людей затрудняются раскладывать четырех- или пятизначные числа. Для упрощения процесса запишите число над двумя колонками.

  • Разложим на множители число 6552.
  • Разделите данное число на наименьший простой делитель (кроме 1), на который данное число делится без остатка. Запишите этот делитель в левой колонке, а в правой колонке запишите результат деления. Как отмечалось выше, четные числа легко раскладывать на множители, так как их наименьшим простым множителем всегда будет число 2 (у нечетных чисел наименьшие простые множители различны).

    • В нашем примере число 6552 – четное, поэтому 2 является его наименьшим простым множителем. 6552 ÷ 2 = 3276. В левой колонке запишите 2, а в правой - 3276.
  • Далее разделите число в правой колонке на наименьший простой делитель (кроме 1), на который данное число делится без остатка. Запишите этот делитель в левой колонке, а в правой колонке запишите результат деления (продолжите этот процесс до тех пор, пока в правой колонке не останется 1).

    • В нашем примере: 3276 ÷ 2 = 1638. В левой колонке запишите 2, а в правой - 1638. Далее: 1638 ÷ 2 = 819. В левой колонке запишите 2, а в правой - 819.
  • Вы получили нечетное число; для таких чисел найти наименьший простой делитель сложнее. Если вы получили нечетное число, попробуйте разделить его на наименьшие простые нечетные числа: 3, 5, 7, 11.

    • В нашем примере вы получили нечетное число 819. Разделите его на 3: 819 ÷ 3 = 273. В левой колонке запишите 3, а в правой - 273.
    • При подборе делителей опробуйте все простые числа вплоть до квадратного корня из наибольшего делителя, который вы нашли. Если ни один делитель не делит число нацело, то вы, скорее всего, получили простое число и можете прекратить вычисления.
  • Продолжите процесс деления чисел на простые делители до тех пор, пока в правой колонке не останется 1 (если в правой колонке вы получили простое число, разделите его само на себя, чтобы получить 1).

    • Продолжим вычисления в нашем примере:
      • Разделите на 3: 273 ÷ 3 = 91. Остатка нет. В левой колонке запишите 3, а в правой - 91.
      • Разделите на 3. 91 делится на 3 с остатком, поэтому разделите на 5. 91 делится на 5 с остатком, поэтому разделите на 7: 91 ÷ 7 = 13. Остатка нет. В левой колонке запишите 7, а в правой - 13.
      • Разделите на 7. 13 делится на 7 с остатком, поэтому разделите на 11. 13 делится на 11 с остатком, поэтому разделите на 13: 13 ÷ 13 = 1. Остатка нет. В левой колонке запишите 13, а в правой - 1. Ваши вычисления закончены.
  • В левой колонке представлены простые множители исходного числа. Другими словами, при перемножении всех чисел из левой колонки вы получите число, записанное над колонками. Если один множитель появляется в списке множителей несколько раз, используйте показатели степени для его обозначения. В нашем примере в списке множителей 2 появляется 4 раза; запишите эти множители как 2 4 , а не как 2*2*2*2.

    • В нашем примере 6552 = 2 3 × 3 2 × 7 × 13. Вы разложили число 6552 на простые множители (порядок множителей в этой записи не имеет значения).
  • Любое составное число можно представить в виде произведения его простых делителей:

    28 = 2 · 2 · 7

    Правые части полученных равенств называют разложением на простые множители чисел 15 и 28.

    Разложить данное составное число на простые множители - значит представить это число в виде произведения его простых делителей.

    Разложение данного числа на простые множители выполняется следующим образом:

    1. Сначала нужно подобрать самое маленькое простое число из таблицы простых чисел, на которое данное составное число делится без остатка, и выполнить деление.
    2. Далее, нужно опять подобрать самое маленькое простое число, на которое уже полученное частное будет делиться без остатка.
    3. Выполнение второго действия повторяют до тех пор, пока в частном не получится единица.

    В качестве примера, разложим на простые множители число 940. Находим наименьшее простое число, на которое делится 940. Таким числом является 2:

    Теперь подбираем наименьшее простое число, на которое делится 470. Таким числом является опять 2:

    Наименьшее простое число, на которое делится 235 - это 5:

    Число 47 простое, значит наименьшим простым числом, на которое делится 47, будет само это число:

    Таким образом, мы получаем число 940, разложенное на простые множители:

    940 = 2 · 470 = 2 · 2 · 235 = 2 · 2 · 5 · 47

    Если в разложении числа на простые множители получилось несколько одинаковых сомножителей, то для краткости, их можно записать в виде степени:

    940 = 2 2 · 5 · 47

    Разложение на простые множители удобнее всего записывать следующим образом: сначала записываем данное составное число и справа от него проводим вертикальную черту:

    Справа от черты записываем самый маленький простой делитель, на который делится данное составное число:

    Выполняем деление и получившееся в результате деления частное записываем под делимым:

    С частным поступаем так же, как и с данным составным числом, т. е. подбираем самое маленькое простое число, на которое оно делится без остатка и выполняем деление. И так повторяем до тех пор, пока в частном не получится единица:

    Обратите внимание, что иногда бывает достаточно трудно выполнить разложение числа на простые множители, так как при разложении мы можем столкнуться с большим числом, которое сложно с ходу определить, простое оно или составное. А если оно составное, то не всегда легко найти его наименьший простой делитель.

    Попробуем к примеру разложить на простые множители число 5106:

    Дойдя до частного 851, трудно с ходу определить его наименьший делитель. Обращаемся к таблице простых чисел. Если в ней найдётся число, поставившее нас в затруднение, значит оно делится только на себя и на единицу. Числа 851 нет в таблице простых чисел, значит, оно является составным. Остаётся только методом последовательного перебора делить его на простые числа: 3, 7, 11, 13, ..., и так до тех пор, пока не найдём подходящего простого делителя. Методом перебора находим, что 851 делится на число 23.

    Что такое разложение на множители? Это способ превращения неудобного и сложного примера в простой и симпатичный.) Оч-ч-чень мощный приём! Встречается на каждом шагу и в элементарной математике, и в высшей.

    Подобные превращения на математическом языке называются тождественными преобразованиями выражений. Кто не в теме - прогуляйтесь по ссылке. Там совсем немного, просто и полезно.) Смысл любого тождественного преобразования - это запись выражения в другом виде с сохранением его сути.

    Смысл разложения на множители предельно прост и понятен. Прямо из самого названия. Можно забыть (или не знать), что такое множитель, но то, что это слово происходит от слова "умножить" сообразить-то можно?) Разложить на множители означает: представить выражение в виде умножения чего-то на чего-то. Да простят мне математика и русский язык...) И всё.

    Например, надо разложить число 12. Можно смело записать:

    Вот мы и представили число 12 в виде умножения 3 на 4. Прошу заметить, что циферки справа (3 и 4) совсем другие, чем слева (1 и 2). Но мы прекрасно понимаем, что 12 и 3·4 одно и то же. Суть числа 12 от преобразования не изменилась.

    А можно разложить 12 по-другому? Легко!

    12=3·4=2·6=3·2·2=0,5·24=........

    Вариантов разложения - бесконечное количество.

    Разложение чисел на множители - штука полезная. Очень помогает, например, при действиях с корнями. Но разложение на множители алгебраических выражений вещь не то, что полезная, она - необходимая! Чисто для примера:

    Упростить:

    Кто не умеете раскладывать выражение на множители, отдыхает в сторонке. Кто умеет - упрощает и получает:

    Эффект потрясающий, правда?) Кстати, решение достаточно простое. Ниже сами увидите. Или, например, такое задание:

    Решить уравнение:

    х 5 - x 4 = 0

    Решается в уме, между прочим. С помощью разложения на множители. Ниже мы решим этот пример. Ответ: x 1 = 0; x 2 = 1 .

    Или, то же самое, но для старшеньких):

    Решить уравнение:

    На этих примерах я показал основное назначение разложения на множители: упрощение дробных выражений и решение некоторых типов уравнений. Рекомендую запомнить практическое правило:

    Если перед нами страшное дробное выражение, можно попробовать разложить на множители числитель и знаменатель. Очень часто дробь сокращается и упрощается.

    Если перед нами уравнение, где справа - ноль, а слева - не пойми что, можно попробовать разложить левую часть на множители. Иногда помогает).

    Основные способы разложения на множители.

    Вот они, самые популярные способы:

    4. Разложение квадратного трёхчлена.

    Эти способы надо запомнить. Именно в таком порядке. Сложные примеры проверяются на все возможные способы разложения. И лучше уж проверять по порядочку, чтобы не запутаться... Вот по порядочку и начнём.)

    1. Вынесение общего множителя за скобки.

    Простой и надёжный способ. От него плохо не бывает! Бывает либо хорошо, либо никак.) Поэтому он и стоит первым. Разбираемся.

    Все знают (я верю!)) правило:

    a(b+c) = ab+ac

    Или, в более общем виде:

    a(b+c+d+.....) = ab+ac+ad+....

    Все равенства работают как слева направо, так и наоборот, справа налево. Можно записать:

    ab+ac = a(b+c)

    ab+ac+ad+.... = a(b+c+d+.....)

    Вот и вся суть вынесения общего множителя за скобки.

    В левой части а - общий множитель для всех слагаемых. Умножается на всё, что есть). Справа это самое а находится уже за скобками.

    Практическое применение способа рассмотрим на примерах. Сначала вариант простой, даже примитивный.) Но на этом варианте я отмечу (зелёным цветом) очень важные моменты для любого разложения на множители.

    Разложить на множители:

    ах+9х

    Какой общий множитель сидит в обоих слагаемых? Икс, разумеется! Его и будем выносить за скобки. Делаем так. Сразу пишем икс за скобками:

    ах+9х=х(

    А в скобках пишем результат деления каждого слагаемого на этот самый икс. По порядочку:

    Вот и всё. Конечно, так подробно расписывать не нужно, Это в уме делается. Но понимать, что к чему, желательно). Фиксируем в памяти:

    Пишем общий множитель за скобками. В скобках записываем результаты деления всех слагаемых на этот самый общий множитель. По порядочку.

    Вот мы и разложили выражение ах+9х на множители. Превратили его в умножение икса на (а+9). Замечу, что в исходном выражении тоже было умножение, даже два: а·х и 9·х. Но оно не было разложено на множители! Потому, что кроме умножения, в этом выражении было ещё и сложение, знак "+"! А в выражении х(а+9) кроме умножения ничего нет!

    Как так!? - слышу возмущённый глас народа - А в скобках!?)

    Да, внутри скобок есть сложение. Но фишка в том, что пока скобки не раскрыты, мы рассматриваем их как одну букву. И все действия со скобками делаем целиком, как с одной буквой. В этом смысле в выражении х(а+9) кроме умножения ничего нет. В этом вся суть разложения на множители.

    Кстати, можно ли как-то проверить, всё ли правильно мы сделали? Запросто! Достаточно обратно умножить то, что вынесли (икс) на скобки и посмотреть - получилось ли исходное выражение? Если получилось, всё тип-топ!)

    х(а+9)=ах+9х

    Получилось.)

    В этом примитивном примере проблем нет. Но если слагаемых несколько, да ещё с разными знаками... Короче, каждый третий ученик косячит). Посему:

    При необходимости проверяем разложение на множители обратным умножением.

    Разложить на множители:

    3ах+9х

    Ищем общий множитель. Ну, с иксом всё ясно, его можно вынести. А есть ли ещё общий множитель? Да! Это тройка. Можно же записать выражение вот так:

    3ах+3·3х

    Здесь сразу видно, что общий множителем будет . Вот его и выносим:

    3ах+3·3х=3х(а+3)

    Разложили.

    А что будет, если вынести только х? Да ничего особенного:

    3ах+9х=х(3а+9)

    Это тоже будет разложение на множители. Но в этом увлекательном процессе принято раскладывать всё до упора, пока есть возможность. Здесь в скобках есть возможность вынести тройку. Получится:

    3ах+9х=х(3а+9)=3х(а+3)

    То же самое, только с одним лишним действием.) Запоминаем:

    При вынесении общего множителя за скобки, стараемся вынести максимальный общий множитель.

    Продолжаем развлечение?)

    Разложить на множители выражение:

    3ах+9х-8а-24

    Что будем выносить? Тройку, икс? Не-е-е... Нельзя. Напоминаю, выносить можно только общий множитель, который есть во всех слагаемых выражения. На то он и общий. Здесь такого множителя нету... Что, можно не раскладывать!? Ну да, обрадовались, как же... Знакомьтесь:

    2. Группировка.

    Собственно, группировку трудно назвать самостоятельным способом разложения на множители. Это, скорее, способ выкрутиться в сложном примере.) Надо сгруппировать слагаемые так, чтобы всё получилось. Это только на примере показать можно. Итак, перед нами выражение:

    3ах+9х-8а-24

    Видно, что какие-то общие буквы и числа имеются. Но... Общего множителя, чтобы был во всех слагаемых - нет. Не падаем духом и разбиваем выражение на кусочки. Группируем. Так, чтобы в каждом кусочке был общий множитель, было чего вынести. Как разбиваем? Да просто ставим скобки.

    Напомню, что скобки можно ставить где угодно и как угодно. Лишь бы суть примера не менялась. Например, можно так:

    3ах+9х-8а-24 =(3ах+9х)-(8а+24 )

    Прошу обратить внимание на вторые скобки! Перед ними стоит знак минус, а и 24 стали положительными! Если, для проверки, обратно раскрыть скобки, знаки поменяются, и мы получим исходное выражение. Т.е. суть выражения от скобок не изменилась.

    Но если вы просто воткнули скобки, не учитывая смену знака, например, вот так:

    3ах+9х-8а-24 =(3ах+9х)-(8а-24 )

    это будет ошибкой. Справа - уже другое выражение. Раскройте скобки и всё станет видно. Дальше можно не решать, да...)

    Но возвращаемся к разложению на множители. Смотрим на первые скобки (3ах+9х) и соображаем, можно ли чего вынести? Ну, этот пример мы выше решали, можно вынести 3х:

    (3ах+9х)=3х(а+3)

    Изучаем вторые скобки, там можно вынести восьмёрку:

    (8а+24)=8(а+3)

    Всё наше выражение получится:

    (3ах+9х)-(8а+24)=3х(а+3)-8(а+3)

    Разложили на множители? Нет. В результате разложения должно получиться только умножение, а у нас знак минус всё портит. Но... В обоих слагаемых есть общий множитель! Это (а+3) . Я не зря говорил, что скобки целиком - это, как бы, одна буква. Значит, эти скобки можно вынести за скобки. Да, именно так и звучит.)

    Делаем, как было рассказано выше. Пишем общий множитель (а+3) , во вторых скобках записываем результаты деления слагаемых на (а+3) :

    3х(а+3)-8(а+3)=(а+3)(3х-8)

    Всё! Справа кроме умножения ничего нет! Значит, разложение на множители завершено успешно!) Вот оно:

    3ах+9х-8а-24=(а+3)(3х-8)

    Повторим кратенько суть группировки.

    Если в выражении нет общего множителя для всех слагаемых, разбиваем выражение скобками так, чтобы внутри скобок общий множитель был. Выносим его и смотрим, что получилось. Если повезло, и в скобках остались совершенно одинаковые выражения, выносим эти скобки за скобки.

    Добавлю, что группировка - процесс творческий). Не всегда с первого раза получается. Ничего страшного. Иногда приходится менять слагаемые местами, рассматривать разные варианты группировки, пока не найдётся удачный. Главное здесь - не падать духом!)

    Примеры.

    Сейчас, обогатившись знаниями, можно и хитрые примеры порешать.) Была в начале урока тройка таких...

    Упростить:

    В сущности, этот пример мы уже решили. Незаметно для себя.) Напоминаю: если нам дана страшная дробь, пробуем разложить числитель и знаменатель на множители. Других вариантов упрощения просто нет.

    Ну, знаменатель здесь не раскладывается, а числитель... Числитель мы уже разложили по ходу урока! Вот так:

    3ах+9х-8а-24=(а+3)(3х-8)

    Пишем результат разложения в числитель дроби:

    По правилу сокращения дробей (основное свойство дроби), мы можем разделить (одновременно!) числитель и знаменатель на одно и то же число, или выражение. Дробь от этого не меняется. Вот и делим числитель и знаменатель на выражение (3х-8) . И там и там получим единички. Окончательный результат упрощения:

    Особо подчеркну: сокращение дроби возможно тогда и только тогда, когда в числителе и знаменателе кроме умножения выражений ничего нет. Именно потому превращение суммы (разности) в умножение так важно для упрощения. Конечно, если выражения разные, то и не сократится ничего. Бывет. Но разложение на множители даёт шанс. Этого шанса без разложения - просто нет.

    Пример с уравнением:

    Решить уравнение:

    х 5 - x 4 = 0

    Выносим общий множитель х 4 за скобки. Получаем:

    х 4 (x-1)=0

    Соображаем, что произведение множителей равно нулю тогда и только тогда, когда какой-нибудь из них равен нулю. Если сомневаетесь, найдите мне парочку ненулевых чисел, которые при умножении ноль дадут.) Вот и пишем, сначала первый множитель:

    При таком равенстве второй множитель нас не волнует. Любой может быть, всё равно в итоге ноль получится. А какое число в четвёртой степени ноль даст? Только ноль! И никакое другое... Стало быть:

    С первым множителем разобрались, один корень нашли. Разбираемся со вторым множителем. Теперь нас не волнует уже первый множитель.):

    Вот и нашли решение: x 1 = 0; x 2 = 1 . Любой из этих корней подходит к нашему уравнению.

    Очень важное замечание. Обратите внимание, мы решали уравнение по кусочкам! Каждый множитель приравнивали к нулю, не обращая внимания на остальные множители. Кстати, если в подобном уравнении будет не два множителя, как у нас, а три, пять, сколько угодно - решать будем точно так же. По кусочкам. Например:

    (х-1)(х+5)(х-3)(х+2)=0

    Тот, кто раскроет скобки, перемножит всё, тот навсегда зависнет на этом уравнении.) Правильный ученик сразу увидит, что слева кроме умножения ничего нет, справа - ноль. И начнёт (в уме!) приравнивать к нулю все скобочки по порядочку. И получит (за 10 секунд!) верное решение: x 1 = 1; x 2 = -5; x 3 = 3; x 4 = -2.

    Здорово, правда?) Такое элегантное решение возможно, если левая часть уравнения разложена на множители. Намёк понятен?)

    Ну и, последний пример, для старшеньких):

    Решить уравнение:

    Чем-то он похож на предыдущий, не находите?) Конечно. Самое время вспомнить, что в алгебре седьмого класса под буквами могут скрываться и синусы, и логарифмы, и всё, что угодно! Разложение на множители работает во всей математике.

    Выносим общий множитель lg 4 x за скобки. Получаем:

    lg 4 x=0

    Это один корень. Разбираемся со вторым множителем.

    Вот и окончательный ответ: x 1 = 1; x 2 = 10 .

    Надеюсь, вы осознали всю мощь разложения на множители в упрощении дробей и решении уравнений.)

    В этом уроке мы познакомились с вынесением общего множителя и группировкой. Остаётся разобраться с формулами сокращённого умножения и квадратным трёхчленом.

    Если Вам нравится этот сайт...

    Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

    Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

    можно познакомиться с функциями и производными.



    THE BELL

    Есть те, кто прочитали эту новость раньше вас.
    Подпишитесь, чтобы получать статьи свежими.
    Email
    Имя
    Фамилия
    Как вы хотите читать The Bell
    Без спама