THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Свойства алкинов

Физические свойства. Температуры кипения и плавления ацетиленовых углеводородов увеличиваются с ростом их молекулярной массы. При обычных условиях алкины С 2 Н 2 -С 4 Н 6 – газы, С 5 Н 8 -С 16 Н 30 – жидкости, с С 17 Н 32 – твердые вещества. Температуры кипения и плавления алкинов выше, чем у соответствующих алкенов (табл.6.4.1).

Таблица 6.4.1. Физические свойства алкенов и алкинов

Алкины плохо растворимы в воде, лучше – в органических растворителях.

Химические свойства алкинов сходны с алкенами, что обусловлено их ненасыщенностью.
Характеристики связей в алкинах:

Некоторые отличия в свойствах алкинов и алканов определяются следующими факторами.

  1. p-Электроны более короткой тройной связи прочнее удерживаются ядрами атомов углерода и обладают меньшей поляризуемостью (подвижностью). Поэтому реакции электрофильного присоединения к алкинам протекают медленнее, чем к алкенам.
  2. p-Электронное облако тройной связи сосредоточено в основном в межъядерном пространстве и в меньшей степени экранирует ядра углеродных атомов с внешней стороны. Следствием этого является доступность ядер углерода при атаке нуклеофильными реагентами и способность алкинов вступать в реакции нуклеофильного присоединения .
  3. Связь атома водорода с углеродом в sp-гибридизованном состоянии значительно более полярна по сравнению с С-Н-связями в алканах и алкенах. Это объясняется различным вкладом в гибридизованное состояние s-орбитали, которая более прочно, чем р-АО, удерживает электроны (сравните форму и энергию s- и р-АО). Доля s-АО в sp 3 -состоянии составляет 25%, в sp 2 - 33%, а в sp- 50%. Чем больше вклад s-АО, тем выше способность атома удерживать внешние электроны, т.е. его электроотрицательность. Повышенная полярность связи С(sp)-Н приводит к возможности ее гетеролитического разрыва с отщеплением протона Н + . Таким образом, алкины с концевой тройной связью (алкины-1) проявляют кислотные свойства и способны, вступая в реакции с металлами, образовывать соли.

I. Реакции присоединения к алкинам

1. Гидрирование

В присутствии металлических катализаторов (Pt, Ni) алкины присоединяют водород с образованием алкенов (разрывается первая

p-связь), а затем алканов (разрывается вторая p-связь):

При использовании менее активного катализатора
гидрирование останавливается на стадии образования алкенов.

2. Галогенирование

Электрофильное присоединение галогенов к алкинам протекает медленнее, чем для алкенов (первая p-связь разрывается труднее, чем вторая):

Алкины обесцвечивают бромную воду (качественная реакция).

3. Гидрогалогенирование

Присоединение галогеноводородов также идет по электрофильному механизму. Продукты присоединения к несимметричным алкинам определяются правилом Марковникова :

Гидрохлорирование ацетилена используется в одном из промышленных способов получения винилхлорида:

Винилхлорид является исходным веществом (мономером) в производстве поливинилхлорида (ПВХ).

4. Гидратация (реакция Кучерова)

Присоединение воды происходит в присутствии катализатора соли ртути (II) и идет через образование неустойчивого непредельного спирта, который изомеризуется в уксусный альдегид (в случае ацетилена):

или в кетон (в случае других алкинов):

5. Полимеризация

1. Димеризация под действием водно-аммиачного раствора CuCl:

2. Тримеризация ацетилена над активированным углем приводит к образованию бензола (реакция Зелинского):


Возможно образование молекул, содержащих большее число звеньев ацетилена, как циклического, так и линейного строения

… -СН=СН-СН=СН-СН=СН-…

(такие полимеры обладают полупроводниковыми свойствами).

Следует также отметить, что высокомолекулярное вещество – карбин (третья аллотропная модификация углерода) – образуется не в результате полимеризации ацетилена, а при окислительной поликонденсации ацетилена в присутствии CuCl:


II. Образование солей

Ацетилен и его гомологи с концевой тройной связью (алкины-1) вследствие полярности связи С (sp)-Н проявляют слабые кислотные свойства: атомы водорода могут замещаться атомами металла. При этом образуются соли – ацетилениды :

Ацетилениды щелочных и щелочноземельных металлов используются для получения гомологов ацетилена (раздел 6.5 ).

При взаимодействии ацетилена (или ) с аммиачными растворами оксида серебра или хлорида меди (I) выпадают осадки нерастворимых ацетиленидов:

Образование белого осадка ацетиленида серебра (или красно-коричневого – ацетиленида меди ) служит качественной реакцией на концевую тройную связь. Ацетилениды разлагаются при действии кислот: В сухом состоянии ацетилениды тяжелых металлов чувствительны к ударам и легко взрываются.

Если тройная связь находится не на конце цепи, то кислотные свойства отсутствуют (нет подвижного атома водорода) и ацетилениды не образуются:


III. Окисление алкинов

Ацетилен и его гомологи окисляются перманганатом калия с расщеплением тройной связи и образованием карбоновых кислот:

Алкины обесцвечивают раствор KMnO 4 , что используется для их качественного определения.

При сгорании (полном окислении) ацетилена выделяется большое количества тепла:

Температура ацетиленово-кислородного пламени достигает 2800- 3000° С. На этом основано применение ацетилена для сварки и резки металла. Ацетилен образует с воздухом и кислородом взрывоопасные смеси. В сжатом, и особенно в сжиженном, состоянии он способен взрываться от удара. Поэтому ацетилен хранится в стальных баллонах в виде растворов в ацетоне, которым пропитывают асбест или кизельгур.

Окисление ацетилена и его гомологов протекает в зависимости от того, в какой среде протекает процесс.

Алкины - ациклические углеводороды, содер­жащие в молекуле помимо одинарных связей, одну тройную связь между атомами углерода и соответ­ствующие общей формуле С n Н 2n-2 .

Атомы углерода, между которыми образо­вана тройная связь, находятся в состоянии sp-гибридизации. Это означает, что в гибридиза­ции участвуют одна s- и одна р-орбиталь, а две р-орбитали остаются негибридизованными. Пере­крывание гибридных орбиталей приводит к об­разованию σ-связи, а за счет негибридизованных р-орбиталей соседних атомов углерода образуются две π-связи. Таким образом, тройная связь состоит из одной σ-связи и двух π-связей .

Все гибридные орбитали атомов, между которы­ми образована двойная связь, а также заместители при них (в случае этина - атомы водорода) лежат на одной прямой, а плоскости π-связей перпенди­кулярны друг другу.

Тройная углерод-углеродная связь с длиной 0,12 нм короче двойной, энергия тройной связи больше, т. е. она является более прочной.

Тройная связь — это комбинация одной s- и двух p-связей. Атомы углерода, входящие в состав молекулы ацетилена, находятся в состоянии sp-гибридизации.

Гомологический ряд этина

Неразветвленные алкины составляют гомологи­ческий ряд этина (ацетилена): С 2 Н 2 - этин, С 3 Н 4 - пропин, С 4 Н 6 - бутин, С 5 Н 8 - пентин, С 6 Н 10 - гексин и т. д.

Изомерия и номенклатура алкинов

Для алкинов, так же как и для алкенов, характерна структурная изомерия: изо­мерия углеродного скеле­та и изомерия положения кратной связи . Простейший алкин, для которого харак­терны структурные изомеры положения кратной связи класса алкинов, - это бутин:

Изомерия углеродного скелета у алкинов возможна, начиная с пентина:

Так как тройная связь предполагает линейное строение углеродной цепи, геометрическая (цис-, транс-) изомерия для алкинов невозможна .

Наличие тройной связи в молекулах углеводо­родов этого класса отражается суффиксом -ин, а ее положение в цепи - номером атома углерода.

Например:

Алкинам изомерны соединения некоторых дру­гих классов . Так, химическую формулу C 6 Н 10 име­ют гексин (алкин), гексадиен (алкадиен) и цикло­гексен (циклоалкен):

Температуры кипения и плавления алкинов, так же как и алкенов, закономерно повышаются при увеличении молекулярной массы соединений .

Алкины имеют специфический запах. Они луч­ше растворяются в воде, чем алканы и алкены.

Химические свойства алкинов

Реакции присоединения . Алкины относятся к непредельным соединениям и вступают в реак­ции присоединения. В основном это реакции элек­трофильного присоединения.

1. Галогенирование (присоединение молекулы галогена). Алкин способен присоединить две моле­кулы галогена (хлора, брома).

2. Гидрогалогенирование (присоединение гало­геноводорода). Реакция присоединения галогено­водорода, протекающая по электрофильному меха­низму, также идет в две стадии, причем на обеих стадиях гидрогалогенирования выполняется пра­вило Марковникова:

3. Гидратация (присоединение воды). Большое значение для промышленного синтеза кетонов и аль­дегидов имеет реакция присоединения воды (гидра­тация), которую называют реакцией Кучерова:

4. Гидрирование алкинов. Алкины присоединя­ют водород в присутствии металлических катали­заторов (Pt, Pd, Ni):

Так как тройная связь содержит две реакцион­носпособные π-связи, алканы присоединяют водо­род в две ступени:

1) тримеризация - начальный этап, в течение которого при пропускании этина над активированным углем образуется смесь продуктов, одним из которых является бензол:

2) димеризация - следующий этап, в процессе которого под действием солей одновалентной меди образуется винилацетилен:

Это вещество используется для получения хлоропрена:

полимеризацией которого получают хлоропрено­вый каучук:

Окисление алкинов. Этин (ацетилен) горит в кислороде с выделением очень большого количе­ства теплоты:

На этой реакции основано действие кислородно­ацетиленовой горелки, пламя которой имеет очень высокую температуру (более 3000 °с), что позволя­ет использовать ее для резки и сварки металлов.

На воздухе ацетилен горит коптящим пламе­нем, т. к. содержание углерода в его молекуле вы­ше, чем в молекулах этана и этена.

Алкины, как и алкены, обесцвечивают подкис­ленные растворы перманганата калия; при этом происходит разрушение кратной связи.

Химические свойства алкинов - конспект

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости

Алкины - непредельные (ненасыщенные) углеводороды, имеющие в молекуле одну тройную связь С≡С. Каждая такая связь содержит одну сигма-связь (σ-связь) и две пи-связи (π-связи).

Алкины также называют ацетиленовыми углеводородами. Первый член гомологического ряда - этин - CH≡CH (ацетилен). Общая формула их гомологического ряда - C n H 2n-2 .

Номенклатура и изомерия алкинов

Названия алкинов формируются путем добавления суффикса "ин" к названию алкана с соответствующим числом: этин, пропин, бутин и т.д.

При составлении названия алкина важно учесть, что главная цепь атомов углерода должна обязательно содержать тройную связь. Нумерация атомов углерода в ней начинается с того края, к которому ближе тройная связь. В конце названия указывают атом углерода у которых начинается тройная связь.

Для алкинов характерна изомерия углеродного скелета, положения тройной связи, межклассовая изомерия с алкадиенами.

Пространственная геометрическая изомерия для них невозможна, в виду того, что каждый атом углерода, прилежащий к тройной связи, соединен только с одним единственным заместителем.


Некоторые данные, касающиеся алкинов, надо выучить:

  • В молекулах алканов присутствуют тройные связи, длина которых составляет 0,121 нм
  • Тип гибридизации атомов углерода - sp
  • Валентный угол (между химическими связями) составляет 180°

Ацетилен получают несколькими способами:

  • Пиролиз метана
  • При нагревании метана до 1200-1500 °C происходит димеризация молекул метана, в ходе чего отщепляется водород.

    2CH 4 → (t) CH≡CH + 3H 2

  • Синтез Бертло
  • Осуществляется напрямую, из простых веществ. Протекает на вольтовой (электрической) дуге, в атмосфере водорода.

    2C + H 2 → (t, вольтова дуга) CH≡CH

  • Разложение карбида кальция
  • В результате разложения карбида кальция образуется ацетилен и гидроксид кальция II.

    CaC 2 + 2H 2 O → CH≡CH + Ca(OH) 2

Получение гомологов ацетилена возможно в реакциях дегидрогалогенирования дигалогеналканов, в которых атомы галогена расположены у одного атома углерода или у двух соседних атомов.


Химические свойства алкины

Алкины - ненасыщенные углеводороды, легко вступающие в реакции присоединения. Реакции замещения для них не характерны.


©Беллевич Юрий Сергеевич

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к

Алкины – углеводороды состава C n H 2n-2 , содержащие одну тройную углерод-углеродную связь.

Номенклатура. Названия алкинов образуют, заменяя суффикс «ан » в названии соответствующего алкана на суффикс «ин ». Тривиальное название первого представителя гомологического ряда - ацетилен.

По рациональной номенклатуре алкинам дают названия как производным ацетилена, полученным в результате замещения одного или двух атомов водорода на алкильные радикалы. Например, пропин

СН 3 -С≡СН по рациональной номенклатуре будет иметь название - метилацетилен.

Нахождение алкинов в природе. Ацетилен и его гомологи мало распространены в природе. Более распространены полиины, которые обнаружены в некоторых растениях. В составе природных полиинов содержится от двух до пяти тройных углерод-углеродных связей.

Получение алкинов. В промышленных масштабах получают, в основном, ацетилен.

1. Пиролиз метана и алканов:

2. Гидролиз карбида кальция: CaC 2 + 2H 2 O → C 2 H 2 + Ca(OH) 2

3. Дегидрогалогенирование вицинальных и геминальных дигалогенидов:

отщепление галогеноводорода происходит под действием спиртового раствора щелочи:

4. Алкилирование ацетилена и алкинов:

НС≡СNа + R-Сl → НС≡С-R + NаСl

R-С≡С- MgCl + R-Сl → R-С≡С-R + MgCl 2

Изомерия.

1. Структурная

Для алкинов характерны следующие виды:

а) различное строение углеродной цепи (для углеводородов с числом атомов углерода ≥ 5);

б) различное расположение кратной связи (для углеводородов с числом атомов углерода ≥ 4;

в) межклассовая.

Межклассовыми изомерами алкинов могут быть алкадиены, циклоалкены.

Строение алкинов. Атомы углерода алкинов, образующие тройную связь, находятся в состоянии sр-гибридизации. Тройная связь представляет комбинацию σ-С-С (перекрывание sр - sр - орбиталей) и двух π-С-С связей (боковое перекрывание р-р-орбиталей). Молекула ацетилена имеет линейное строение, углы между связями соответствуют 180 0 , в молекулах гомологов и их изомеров присутствует только фрагмент линейной структуры.

Тройная связь, по сравнению с двойной, короче и более поляризуема. Увеличение электроотрицательности атома углерода в sр-гибридизации приводит к более высокой, по сравнению с алкенами, поляризации σ-С-Н-связи.

Молекула ацетилена неполярна, но при введении одной алкильной группы появляется значительный, по сравнению с этиленовыми углеводородами, дипольный момент:

Физические свойства. Алкины представляют собой бесцветные газы или жидкости, начиная с С 17 - твердые вещества. Поскольку для алкинов характерны значительные дипольные моменты, они, по сравнению с алканами и алкенами, имеют более высокие температуры кипения и плавления, относительную плотность. Алкины нерастворимы воде, однако хорошо растворяются в органических малополярных растворителях. Например, ацетилен хорошо растворяется в ацетоне.

Ацетилен термодинамически неустойчивое соединение, при сжижении легко разлагается на углерод и водород.

Химические свойства. Химические свойства алкинов определяются наличием С≡С-связи, для которой, как и для двойной углерод-углеродной связи, характерны реакции присоединения электрофильных и нуклеофильных реагентов, реакции окисления и полимеризации. Алкины с концевой тройной связью вступают в реакции замещения водорода при тройной связи, который обладает слабыми кислотными свойствами.

Таким образом, молекулы алкинов содержат два основных реакционных центра – С≡С-связь и подвижный водород:

Реакции электрофильного присоединения. В реакциях электрофильного присоединения ацетилен и его гомологи по сравнению с алкенами проявляют меньшую реакционную способность, что обусловлено особенностями в строении тройной связи. Реакции протекают ступенчато (присоединение первой молекулы реагента, а затем - второй), при этом присоединение молекулы электрофила сопровождается образованием как одного геометрического изомера (стереоселективное присоединение), так и образованием смеси геометрических изомеров. Реакции присоединения к алкинам резко ускоряет присутствие в реакционной среде катализатора - соли меди (I) или ртути (II). Поэтому многие реакции присоединения к тройной связи рассматриваются как реакции нуклеофильного присоединения (вода, спирты, карбоновые кислоты и другие). В реакциях присоединения реакционная активность ацетилена по сравнению с другими алкинами мала.

а) присоединение галогенов:

Взаимодействие с молекулой галогена происходит как стереоселективное транс- присоединение (образование транс-изомера). Реакция с бромом является качественной реакцией для обнаружения как двойной, так и тройной связи.

б) присоединение галогеноводородов:

Присоединение галогеноводородов происходит по правилу Марковникова с образованием гем-дигалогенопроизводных.

в) присоединение воды.

В кислой среде в присутствии солей ртути (II) алкины взаимодействуют с водой с образованием карбонильных соединений (реакция М.Г. Кучерова, 1881г.). Присоединение воды происходит в соответствии с правилом Марковникова с образованием неустойчивых ненасыщенных спиртов (енолов), которые в условиях реакции быстро изомеризуются (правило А.П. Эльтекова, 1887г.) в более стабильные карбонильные соединения (кетоны):

Из ацетилена образуется уксусный альдегид:

г) реакции винилирования .

В реакциях присоединения спиртов, карбоновых кислот, циаоноводорода и т.д. к алкинам образуются соединения с двойной углерод-углеродной связью (винильные производные):

При этом получают простые и сложные эфиры, акрилонитрилы, которые в промышленном масштабе используются в качестве мономеров в реакциях полимеризации (например, при получении поливинилового эфира, поливинилацетата, полиакрилонитрила).

Р еакции по связи С-Н:

а) кислотные свойства.

Ацетилен и алкины с концевой тройной связью вследствие высокой электроотрицательности sр-гибридизованного атома углерода проявляют кислотные свойства за счет связи С-Н (СН-кислотность). Ряд кислотности:

При взаимодействии с металлами, сильными основаниями образуются соли – ацетилениды, при этом связь С-металл в зависимости от природы металла имеет различную полярность:

Ацетилениды щелочных металлов легко разлагаются водой.

Реакцию алкинов с магнийорганическими соединениями (реактив Гриньяра) открыл Ж. Иоцич (1902 г.), в результате взаимодействия получают углеводороды:

С ионами некоторых тяжелых металлов образуются нерастворимые в воде, иногда окрашенные, соли:

R-C≡CH + OH → R-C≡CAg↓ + 2NH 3 + H 2 O

R-C≡CH + [Сu(NH 3) 2 ]Сl → R-C≡CCu↓ + NH 4 Cl + NH 3

Реакции используются как качественные на концевую тройную связь.

Ацетилениды меди и серебра термически нестабильные вещества, при нагревании легко разлагаются: АgC≡CAg → 2Ag + 2С.

Ацетилениды используются в различных органических синтезах.

б) взаимодействие с карбонильными соединениями.

Ацетилен и алкины с концевой тройной связью в присутствии щелочей присоединяются к карбонильной группе альдегидов и кетонов с образованием ненасыщенных спиртов:

НС≡СН + Н 2 С=О → НС≡С-Н 2 С-ОН → НО-Н 2 С-НС≡С-Н 2 С-ОН

пропаргиловый спирт бутин-2-диол-1,4

Реакции окисления и восстановления. Алкины, как и алкены, легко окисляются различными по силе окислителями (см. «Алкены»). Реакция с перманганатом калия в нейтральной или слабощелочной среде (реакция Вагнера) является качественной реакцией на ненасыщенный характер углеводородов. При полном окислении (горении) ацетилена в избытке кислорода выделяется огромное количество энергии.

Гидрирование (восстановление) ацетиленовых углеводородов протекает с образованием алкенов, а затем алканов. Каталитическое гидрирование (катализаторы: Ni, Pt, Pd) происходит нестереоселективно, при этом образуются как цис -, так и транс -алкены. Восстановление водородом в других условиях (например, в присутствии щелочного металла в спирте или цинка в соляной кислоте) преимущественно образуются транс-алкены:

Димеризация, циклоолигомеризация и полимеризация. В присутствии катализаторов ацетилен и алкины могут образовывать димеры, циклические тримеры и тетрамеры, линейные полимеры:

а) в присутствии ионов меди (I) в кислой среде

б) циклоприсоединение

в) полимеризация

цис -полиацетилен, красного цвета, менее устойчив; транс- полиацетилен, синего цвета, более устойчив.

Применение:

Основные направления применения алкинов - органический синтез, сырье для производства синтетических каучуков и других полимеров, сварка и резка металлов.

Знаете ли вы, что

В 1836г. из карбида кальция впервые получил ацетилен и изучил некоторые его свойства английский химик Э.Дэви.

В 1860-х годах пиролизом метана получил углеводород состава С 2 Н 2 и дал название «ацетилен» французский химик Марселен Бертло.

В середине 19 века получены ацетилениды серебра и меди, калия и натрия.

В 1895 г. французский химик Анри Ле Шаталье провел и изучил реакцию горения ацетилена в избытке кислорода.

Катализатор (активированный уголь) в реакции образования бензола открыт русским химиком Николаем Дмитриевичем Зелинским.

В 1931г. американский ученый Юлиус Артур Ньюленд получил винилацетилен и совместно с коллегой Уоллесом Хьюмом Карозерсом разработал технологию получения хлоропрена и хлоропренового каучука.

С 1906г. ацетилен широко используется для автогенной сварки и резки металлов, температура ацетилен-кислородного пламени около 3000 0 С. Первый сварочный аппарат изготовлен в США в 1904г.

Полиацетилены - вещества с высокой электропроводностью («органические металлы»). В 1976 г. в лаборатории японского ученого Хидэки Сиракавы обнаружена сверхпроводимость материала, полученного обработкой полиацетилена парами иода (в миллиард раз лучше полиацетилена), область применения таких материалов - токопроводящие полимеры электронных и звуковоспроизводящих устройств.

ОПРЕДЕЛЕНИЕ

Алкины непредельные углеводороды, молекулы которых содержат одну тройную связь, в названии алкинов присутствует суффикс –ин.

Общая формула алкинов C n H 2 n -2

Таблица 1. Гомологический ряд алкинов.

Чтобы дать название алкину необходимо выбрать самую длинную углеводородную цепь, содержащую тройную связь. Нумерация цепи начинается с того края, ближе к которому находится тройная связь.

Атомы углерода тройной связи в молекулах алкинов находятся в sp-гибридизации: две σ-связи располагаются на одной линии под углом 180С друг к другу, две π-связи образованы p-электронами соседних атомов углерода и располагаются во взаимно перпендикулярных плоскостях. Тройная связь является сочетанием одной σ- и двух π-связей.

Для алкинов, начиная с пентина, характерна изомерия углеродного скелета:

CH≡C-CH 2 -CH 2 -CH 3 (пентин-1)

CH≡C-CH(CH 3)-CH 3 (3-метилбутин1)

начиная с бутина, для всех алкинов характерна изомерия положения тройной связи:

CH≡C-CH 2 -CH 3 (бутин-1)

CH 3 -C≡C-CH 3 (бутин-2)

Для алкинов характерна межклассовая изомерия с алкадиенами, так веществу с составом C 4 H 6 , соответствует три разных вещества – бутин-1, бутин-2 и бутадиен-1,3.

Химические свойства алкинов

Для алкинов характерны реакции присоединения, протекающие по нуклеофильному механизму, такие как:

— гидрирование – присоединение воды в присутствии 18%-й серной кислоты, сульфата ртути (II) и нагревании до 90С (реакция Кучерова), в результате чего образуются альдегиды

СH≡CH +H 2 O → → CH 3 -CH = O

— галогенирование – присоединение галогенов, протекающее в две стадии

СH≡CH +Br 2 →CHBr = CHBr + Br 2 →CHBr 2 -CHBr 2

— гидрогалогенирование – присоединение галогеноводородов, также, протекающее в две стадии и присоединение второй молекулы галогеноводорода протекает по правилу Марковникова (присоединение галогеноводородов к тройной связи протекает труднее, чем к двойной)

СH≡CH +HСl → CH 2 = CHCl + HCl → CH 3 -CHCl 2

Для алкинов, имеющий концевую тройную связь, характерно наличие слабых кислотных свойств. Такие алкины способны образовывать соли при взаимодействии с активными металлами:

2R-C≡C-H +2Na →2R-C≡C-Na + H 2

Ацетилинид серебра легко образуется и выпадает в осадок при пропускании ацетилена через аммиачный раствор оксида серебра:

СH≡CH + Ag 2 O → Ag- С≡C-Ag↓ + H 2 O

Ацетилен способен тримеризоваться – при пропускании ацетилена над активированным углем при 600С образуется бензол:

3C 2 H 2 → C 6 H 6

Для алкинов характерны реакции окисления и восстановления. Так, алкины легко окисляются перманганатом калия. В результате этой реакции образуются карбоновые кислоты:

R- С≡C-R’ +[O] +H 2 O → R-COOH + R’-COOH

В присутствии металлических катализаторов алкины присоединяют молекулы водорода:

CH 3 -C≡CH + H 2 → CH 3 -CH = CH 2 + H 2 → CH 3 -CH 2 -CH 3

Качественными реакциями на тройную связь являются реакции обесцвечивания раствора бромной воды и перманганата калия, а также реакция с аммиачным раствором оксида серебра в случае концевого положения тройной связи.

Физические свойства алкинов

При обычных условиях C 2 -С 4 – газы, С 5 -С 16 – жидкости, начиная с С 18 – твердые вещества. Температуры алкинов выше, чем у соответствующих алкенов.

Получение алкинов

Для получения алкинов чаще всего используют:

— реакции дегидрирования алканов и алкенов

CH 3 -CH 3 → СH≡CH +2H 2 ;

CH 2 = CH 2 → СH≡CH +H 2 .

— реакции элиминирования дигалогенпроизводных

(CH 3) 3 -CCl 2 -CH 3 +2KOH →(CH 3) 3 -C≡CH + 2KCl + 2H 2 O.

— реакции ацетиленидов с первичными галогеналканами

СH≡CNa + CH 3 -CH 2 -CH 2 -Br →СH≡C-(CH 2) 3 -CH 3 + NaBr.

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 2

Задание При пропускании смеси пропана и ацетилена через склянку с бромной водой масса склянки увеличилась на 1,3 г. При полном сгорании такого же количества исходной смеси углеводородов выделилось 14 л (н.у.) оксида углерода (IV). Определите массовую долю пропана в исходной смеси.
Решение Ацетилен поглощается бромной водой:

НC ≡ СH + 2Вr 2 → НСВr 2 -СНВr 2

1,3 г — это масса ацетилена, следовательно, количество вещества ацетилена:

v(C 2 H 2) = 1,3/26 = 0,05 моль

При сгорании этого количества ацетилена по уравнению

2С 2 Н 2 + 5О 2 = 4СО 2 + 2Н 2 О

Выделилось:

2-0,05 = 0,1 моль СО 2

Общее количество СО 2 равно:

14/22,4 = 0,625 моль

При сгорании пропана по уравнению

С 3 Н 8 + 5О 2 = ЗСO 2 + 4Н 2 О

Выделилось

0,625 — 0,1 = 0,525 моль СО 2

при этом в реакцию вступило

0,525/3 = 0,175 моль С 3 Н 8

Масса пропана:

0,175 — 44 = 7,7 г.

Общая масса смеси углеводородов равна:

1,3+7,7 = 9,0 г

Массовая доля пропана составляет:

w(С 3 Н 8) = 7,7/9,0 = 0,856, или 85,6%.

Ответ Массовая доля пропана 85,6%.


THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама