THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Рассмотрим события A и B , связанные с одним и тем же опытом. Пусть из каких-то источников стало известно, что событие B наступило, но неизвестно, какой конкретно из элементарных исходов, составляющих событие B , произошел. Что можно сказать в этом случае о вероятности события A ?

Вероятность события A , вычисленную в предположении, что событие B произошло, принято называть условной вероятностью и обозначать P(A|B) .

Условную вероятность P(A|B) события A при условии события B в рамках классической схемы вероятности естественно определить как отношение N AB исходов, благоприятствующих совместному осуществлению событий A и B , к числу N B исходов, благоприятствующих событию B , то есть

Если поделить числитель и знаменатель этого выражения на общее число N элементарных исходов, то получим

Определение . Условной вероятностью события A при условии наступления события B называют отношение вероятности пересечения событий A и B к вероятности события B :

При этом предполагают, что P(B) ≠ 0 .

Теорема . Условная вероятность P(A|B) обладает всеми свойствами безусловной вероятности P(A) .

Смысл этой теоремы заключается в том, что условная вероятность представляет собой безусловную вероятность, заданную на новом пространстве Ω 1 элементарных исходов, совпадающем с событием B .

Пример . Из урны, в которой a=7 белых и b=3 черных шаров, наугад без возвращения извлекают два шара. Пусть событие A 1 состоит в том, что первый извлеченный шар является белым, а A 2 - белым является второй шар. Требуется найти P(A 2 |A 1) .

Способ 1. . По определению условной вероятности

Способ 2. . Перейдем к новому пространству элементарных исходов Ω 1 . Так как событие A 1 произошло, то это означает, что в новом пространстве элементарных исходов всего равновозможных исходов N Ω 1 =a+b-1=9 , а событию A 2 благоприятствует при этом N A 2 =a-1=6 исходов. Следовательно,

Теорема [умножения вероятностей] . Пусть событие A=A 1 A 2 …A n и P(A)>0 . Тогда справедливо равенство:

P(A) = P(A 1) P(A 2 |A 1) P(A 3 |A 1 A 2) … P(A n |A 1 A 2 …A n-1) .

Замечание . Из свойства коммутативности пересечения можно писать

P(A 1 A 2) = P(A 1) P(A 2 |A 1)

P(A 1 A 2) = P(A 2) P(A 1 |A 2) .

Пример . На 7 карточках написаны буквы, образующие слово «СОЛОВЕЙ». Карточки перемешивают и из них наугад последовательно извлекают и выкладывают слева направо три карточки. Найти вероятность того, что получится слово «ВОЛ» (событие A ).

Пусть событие A 1 - на первой карточке написана буква «В», A 2 - на второй карточке написана буква «О», A 2 - на третьей карточке - буква «Л». Тогда событие A - пересечение событий A 1 , A 2 , A 3 . Следовательно,

P(A) = P(A 1 A 2 A 3) = P(A 1) P(A 2 |A 1) P(A 3 |A 1 A 2) .

P(A 1)=1/7 ; если событие A 1 произошло, то на оставшихся 6 карточках «О» встречается два раза, значит P(A 2 |A 1)=2/6=1/3 . Аналогично, P(A 3 |A 1)=2/6=1/3 . Следовательно,

Определение . События A и B , имеющие ненулевую вероятность, называют независимыми, если условная вероятность A при условии B совпадает с безусловной вероятностью A или если условная вероятность B при условии A совпадает с безусловной вероятностью B , то есть

P(A|B) = P(A) или P(B|A) = P(B) ,

в противном случае события A и B называют зависимыми.

Теорема . События A и B , имеющие ненулевую вероятность, являются независимыми тогда и только тогда, когда

P(AB) = P(A) P(B) .

Таким образом, можно дать эквивалентное определение:

Определение . События A и B называют независимыми, если P(AB) = P(A) P(B) .

Пример . Из колоды карт, содержащей n=36 карт, наугад извлекают одну карту. Обозначим через A событие, соответствующее тому, что извлеченная карта будет пиковой, а B - событие, соответствующее появлению «дамы». Определим являются ли зависимыми события A и B .

P(A)=9/36=1/4 , P(B)=4/36=19 , P(AB)=1/36 , . Следовательно, события A и B независимы. Аналогично, .

А также научились решать типовые задачи с независимыми событиями, и сейчас последует гораздо более интересное продолжение, которое позволит не только освоить новый материал, но и, возможно, окажет практическую житейскую помощь.

Кратко повторим, что такое независимость событий: события и являются НЕзависимыми, если вероятность любого из них не зависит от появления либо непоявления другого события. Простейший пример – подбрасывание двух монет. Вероятность выпадения орла либо решки на одной монете никак не зависит от результата броска другой монеты.

Понятие зависимости событий вам тоже знакомо и настал черёд заняться ими вплотную.

Сначала рассмотрим традиционный набор, состоящий из двух событий: событие является зависимым , если помимо случайных факторов его вероятность зависит от появления либо непоявления события . Вероятность события , вычисленная в предположении того, что событие уже произошло , называется условной вероятностью наступления события и обозначается через . При этом события и называют зависимыми событиями (хотя, строго говоря, зависимо только одно из них) .

Карты в руки:

Задача 1

Из колоды в 36 карт последовательно извлекаются 2 карты. Найти вероятность того, что вторая карта окажется червой, если до этого:

а) была извлечена черва;
б) была извлечена карта другой масти.

Решение : рассмотрим событие: – вторая карта будет червой. Совершенно понятно, что вероятность этого события зависит от того, черву или не черву вытянули ранее.

а) Если сначала была извлечена черва (событие ), то в колоде осталось 35 карт, среди которых теперь находится 8 карт червовой масти. По классическому определению :
при условии , что до этого тоже была извлечена черва.

б) Если же сначала была извлечена карта другой масти (событие ), то все 9 черв остались в колоде. По классическому определению :
– вероятность того, что вторая карта окажется червой при условии , что до этого была извлечена карта другой масти.

Всё логично – если вероятность извлечения червы из полной колоды составляет , то при извлечении следующей карты аналогичная вероятность изменится: в первом случае – уменьшится (т.к. черв стало меньше), а во втором – возрастёт: (т.к. все червы остались в колоде).

Ответ :

Зависимых событий, разумеется, может быть и больше. Пока задача не остыла, добавим ещё одно: – третьей картой будет извлечена черва. Предположим, что произошло событие , а затем событие ; тогда в колоде осталось 34 карты, среди которых 7 черв. По классическому определению :
– вероятность наступления события при условии , что до этого были извлечены две червы.

Для самостоятельной тренировки:

Задача 2

В конверте находится 10 лотерейных билетов, среди которых 3 выигрышных. Из конверта последовательно извлекаются билеты. Найти вероятности того, что:

а) 2-й извлечённый билет будет выигрышным, если 1-й был выигрышным;
б) 3-й будет выигрышным, если предыдущие два билета были выигрышными;
в) 4-й будет выигрышным, если предыдущие билеты были выигрышными.

Краткое решение с комментариями в конце урока.

А теперь обратим внимание на один принципиально важный момент: в рассмотренных примерах требовалось найти лишь условные вероятности, при этом предыдущие события считались достоверно состоявшимися . Но ведь в действительности и они являются случайными! Так, в «разогретой» задаче извлечение червы из полной колоды – есть событие случайное, вероятность которого равна .

На практике гораздо чаще требуется отыскать вероятность совместного появления зависимых событий. Как, например, найти вероятность события , состоящего в том, что из полной колоды будет извлечена черва и затем ещё одна черва? Ответ на этот вопрос даёт

теорема умножения вероятностей зависимых событий : вероятность совместного появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже произошло:

В нашем случае:
– вероятность того, что из полной колоды будут извлечены 2 червы подряд.

Аналогично:
– вероятность того, что сначала будет извлечена карта другой масти и затем черва.

Вероятность события получилась заметно больше вероятности события , что, в общем-то, было очевидно безо всяких вычислений.

И, само собой, не нужно питать особых надежд, что из конверта с десятью лотерейными билетами (Задача 2) вы вытяните 3 выигрышных билета подряд:

Да, совершенно верно – теорема умножения вероятностей зависимых событий естественным образом распространяется и на бОльшее их количество.

Закрепим материал несколькими типовыми примерами:

Задача 3

В урне 4 белых и 7 черных шаров. Из урны наудачу один за другим извлекают два шара, не возвращая их обратно. Найти вероятность того, что:

а) оба шара будут белыми;
б) оба шара будут чёрными;
в) сначала будет извлечён белый шар, а затем – чёрный.

Обратите внимание на уточнение «не возвращая их обратно». Этот комментарий дополнительно подчёркивает тот факт, что события зависимы. Действительно, а вдруг извлечённые шары возвращают обратно? В случае возвратной выборки вероятности извлечения чёрного и белого шара меняться не будут, а в такой задаче уже следует руководствоваться теоремой умножения вероятностей НЕзависимых событий .

Решение : всего в урне: 4 + 7 = 11 шаров. Поехали:

а) Рассмотрим события – первый шар будет белым, – второй шар будет белым и найдём вероятность события , состоящего в том, что 1-й шар будет белым и 2-й белым.

По классическому определению вероятности: . Предположим, что белый шар извлечён, тогда в урне останется 10 шаров, среди которых 3 белых, поэтому:
– вероятность извлечения белого шара во 2-м испытании при условии, что до этого был извлечён белый шар.


– вероятность того, что оба шара будут белыми.

б) Найдём вероятность события , состоящего в том, что 1-й шар будет чёрным и 2-й чёрным

По классическому определению: – вероятность того, что в 1-м испытании будет извлечён чёрный шар. Пусть извлечён чёрный шар, тогда в урне останется 10 шаров, среди которых 6 чёрных, следовательно: – вероятность того, что во 2-м испытании будет извлечён чёрный шар при условии, что до этого был извлечен чёрный шар.

По теореме умножения вероятностей зависимых событий:
– вероятность того, что оба шара будут чёрными.

в) Найдём вероятность события (сначала будет извлечён белый шар и затем чёрный)

После извлечения белого шара (с вероятностью ) в урне останется 10 шаров, среди которых 3 белых и 7 чёрных, таким образом: – вероятность того, что во 2-м испытании будет извлечён чёрный шар при условии, что до этого был извлечен белый шар.

По теореме умножения вероятностей зависимых событий:
– искомая вероятность.

Ответ :

Данную задачу нетрудно проверить через теорему сложения вероятностей событий, образующих полную группу . Для этого найдём вероятность 4-го недостающего события: – того, что сначала будет извлечён чёрный шар и затем белый.

События образуют полную группу, поэтому сумма их вероятностей должна равняться единице:
,что и требовалось проверить.

И сразу же предлагаю проверить, насколько хорошо вы усвоили изложенный материал:

Задача 4

Какова вероятность того, что из колоды в 36 карт будут извлечены два туза подряд?

Задача 5

В урне 6 черных, 5 красных и 4 белых шара. Последовательно извлекают три шара. Найти вероятность того, что

а) третий шар окажется белым, если до этого был извлечён черный и красный шар;
б) первый шар окажется черным, второй – красным и третий – белым.

Решения и ответы в конце урока.

Надо сказать, что многие из рассматриваемых задач разрешимы и другим способом, но чтобы не возникло путаницы, пожалуй, вообще о нём умолчу.

Наверное, все заметили, что зависимые события возникают в тех случаях, когда осуществляется некоторая цепочка действий. Однако сама по себе последовательность действий ещё не гарантируют зависимость событий. Пусть, например, студент наугад отвечает на вопросы какого-нибудь теста – данные события хоть и происходят одно за другим, но незнание ответа на один вопрос никак не зависит от незнания других ответов =) Хотя, закономерности тут, конечно, есть =) Тогда совсем простой пример с неоднократным подбрасыванием монеты – сей увлекательный процесс даже так и называется: повторные НЕзависимые испытания .

Я как мог, старался отсрочить этот момент и подбирать разнообразные примеры, но если в задачах на теорему умножения независимых событий хозяйничают стрелки, то здесь происходит самое настоящее нашествие урн с шарами =) Поэтому никуда не деться – снова урна:

Задача 6

Из урны, в которой находится 6 белых и 4 черных шара, извлекаются наудачу один за другим три шара. Найти вероятность того, что:

а) все три шара будут черными;
б) будет не меньше двух шаров черного цвета.

Решение :всего: 6 + 4 = 10 шаров в урне.

Событий в данной задаче будет многовато, и в этой связи целесообразнее использовать смешанный стиль оформления, обозначая прописными латинскими буквами только основные события. Надеюсь, вы уже поняли, по какому принципу подсчитываются условные вероятности.

а) Рассмотрим событие: – все три шара будут черными.

По теореме умножения вероятностей зависимых событий:

б) Второй пункт интереснее, рассмотрим событие: – будет не меньше двух шаров черного цвета. Данное событие состоит в 2 несовместных исходах: либо все шары будут чёрными (событие ) либо 2 шара будут чёрным и 1 белым – обозначим последнее событие буквой .

Событие включается в себя 3 несовместных исхода:

в 1-м испытании извлечён белый и во 2-м и в 3-м испытаниях – чёрные шары
или
и во 2-м – БШ и в 3-м – ЧШ
или
в 1-м испытании извлечён ЧШ и во 2-м – ЧШ и в 3-м – БШ.

Желающие могут ознакомиться с более трудными примерами из сборника Чудесенко , в которых перекладываются несколько шаров. Особым любителям предлагаю задачи повышенной комбинационной сложности – с двумя последовательными перемещениями шаров из 1-й во 2-ю урну, из 2-й в 3-ю и финальным извлечением шара из последней урны – смотрите последние задачи файла Дополнительные задачи на теоремы сложения и умножения вероятностей . Кстати, там немало и других интересных заданий.

А в заключение этой статьи мы разберём прелюбопытнейшую задачу, которой я вас заманивал на самом первом уроке =) Даже не разберём, а проведём небольшое практическое исследование. Выкладки в общем виде будут слишком громоздкие, поэтому рассмотрим конкретный пример:

Петя сдаёт экзамен по теории вероятностей, при этом 20 билетов он знает хорошо, а 10 плохо. Предположим, в первый день экзамен сдаёт часть группы, например, 16 человек, включая нашего героя. В общем, ситуация до боли знакома: студенты один за другим заходят в аудиторию и тянут билеты.

Очевидно, что последовательное извлечение билетов представляет собой цепь зависимых событий, и возникает насущный вопрос : в каком случае Пете с бОльшей вероятностью достанется «хороший» билет – если он пойдёт «в первых рядах», или если зайдёт «посерединке», или если будет тянуть билет в числе последних? Когда лучше заходить?

Сначала рассмотрим «экспериментально чистую» ситуацию, в которой Петя сохраняет свои шансы постоянными – он не получает информацию о том, какие вопросы уже достались однокурсникам, ничего не учит в коридоре, ожидая своей очереди, и т.д.

Рассмотрим событие: – Петя зайдёт в аудиторию самым первым и вытянет «хороший» билет. По классическому определению вероятности: .

Как изменится вероятность извлечения удачного билета, если пропустить вперёд отличницу Настю? В этом случае возможны две несовместные гипотезы:

– Настя вытянет «хороший» (для Пети) билет;
– Настя вытянет «плохой» билет, т.е. увеличит шансы Пети.

Событие же (Петя зайдёт вторым и вытянет «хороший» билет) становится зависимым .

1) Предположим, что Настя с вероятностью «увела» у Пети один удачный билет. Тогда на столе останутся 29 билетов, среди которых 19 «хороших». По классическому определению вероятности:

2) Теперь предположим, что Настя с вероятностью «избавила» Петю от 1-го «плохого» билета. Тогда на столе останутся 29 билетов, среди которых по-прежнему 20 «хороших». По классическому определению:

Используя теоремы сложения вероятностей несовместных и умножения вероятностей зависимых событий, вычислим вероятность того, что Петя вытянет «хороший» билет, будучи вторым в очереди:

Вероятность… осталось той же! Хорошо, рассмотрим событие: – Петя пойдёт третьим, пропустив вперёд Настю и Лену, и вытащит «хороший» билет.

Здесь гипотез будет побольше: дамы могут «обокрасть» джентльмена на 2 удачных билета, либо наоборот – избавить его от 2 неудачных, либо извлечь 1 «хороший» и 1 «плохой» билет. Если провести аналогичные рассуждения, воспользоваться теми же теоремами, то… получится такое же значение вероятности !

Таким образом, чисто с математической точки зрения, без разницы, когда идти – первоначальные вероятности останутся неизменными. НО . Это только усреднённая теоретическая оценка, так, например, если Петя пойдёт последним, то это вовсе не значит, что ему останутся на выбор 10 «хороших» и 5 «плохих» билетов в соответствии с его изначальными шансами. Данное соотношение может варьироваться в лучшую или худшую сторону, однако всё же маловероятно, что среди билетов останется «одна халява», или наоборот – «сплошной ужас». Хотя «уникальные» случаи не исключены – всё-таки тут не 3 миллиона лотерейных билетов с практически нулевой вероятностью крупного выигрыша. Поэтому «невероятное везение» или «злой рок» будут слишком преувеличенными высказываниями.

Математика и «чистый эксперимент» – это хорошо, но какой стратегии и тактики всё же выгоднее придерживаться в реальных условиях ? Безусловно, следует принять во внимание субъективные факторы, например, «скидку» преподавателя для «храбрецов» или его усталость к концу экзамена. Зачастую эти факторы могут быть даже решающими, но в заключительных рассуждениях я постараюсь не сбрасывать со счетов и дополнительные вероятностные аспекты:

Если Вы готовы к экзамену хорошо, то, наверное, лучше идти «в первых рядах». Пока билетов полный комплект, постулат «маловозможные события не происходят » работает на Вас гораздо в бОльшей степени. Согласитесь, что намного приятнее иметь соотношение «30 билетов, среди которых 2 плохих», чем «15 билетов, среди которых 2 плохих». А то, что два неудачных билета на отдельно взятом экзамене (а не по средней теоретической оценке!) так и останутся на столе – вполне и вполне возможно.

Теперь рассмотрим «ситуацию Пети» – когда студент готов к экзамену достаточно хорошо, но с другой стороны, и «плавает» тоже неплохо. Иными словам, «больше знает, чем не знает». В этом случае целесообразно пропустить вперёд 5-6 человек, и ожидать подходящего момента вне аудитории. Действуйте по ситуации. Довольно скоро начнёт поступать информация, какие билеты вытянули однокурсники (снова зависимые события!) , и на «заигранные» вопросы можно больше не тратить силы – учите и повторяйте другие билеты, повышая тем самым первоначальную вероятность своего успеха. Если «первая партия» экзаменующихся «избавила» вас сразу от 3-4 трудных (лично для Вас) билетов, то выгоднее как можно быстрее попасть на экзамен – именно сейчас шансы значительно возросли. Постарайтесь не упускать момент – всего несколько пропущенных вперёд человек, и преимущество, скорее всего, растает. Если же наоборот, «плохих» билетов вытянули мало – ждите. Через несколько человек эта «аномалия» опять же с большой вероятностью, если не исчезнет, то сгладится в лучшую сторону. В «обычном» и самом распространённом случае выгода тоже есть: расклад «24 билета/8 плохих» будет лучше соотношения «30 билетов/10 плохих». Почему? Трудных билетов теперь не десять, а восемь! С удвоенной энергией штудируем материал!

Если Вы готовы неважно или плохо, то само собой, лучше идти в «последних рядах» (хотя возможны и оригинальные решения, особенно, если нечего терять) . Существует небольшая, но всё же ненулевая вероятность, что Вам останутся относительно простые вопросы + дополнительная зубрёжка + шпоры, которые отдадут отстрелявшиеся сокурсники =) И, да – в совсем критической ситуации есть ещё следующий день, когда экзамен сдаёт вторая часть группы;-)

Какой можно сделать вывод? Субъективный оценочный принцип «кто идёт раньше, тот готов лучше» находит внятное вероятностное обоснование!

Мы уже говорили, что в основе определения вероятности события лежит некоторая совокупность условий. Если никаких ограничений, кроме условий, при вычислении вероятности не налагается, то такие вероятности называются безусловными.

Однако в ряде случаев приходится находить вероятности событий при дополнительном условии, что произошло некоторое событие В, имеющее не нулевую вероятность, т.е. Данные вероятности мы будем называть условными и обозначать символом; это означает вероятность события А при условии, что событие В произошло.

Пример 1. Брошены две игральные кости. Чему равна вероятность того, что сумма выпавших на них очков равна 8 (событие A), если известно, что эта сумма есть четное число (событие В)?

Все возможные случаи, которые могут представиться при бросании двух костей, мы запишем в таблице 1.7.1, каждая клетка которой содержит запись возможного события: на первом месте в скобках указывается число очков, выпавших на первой кости, на втором месте -- число очков, выпавших на второй кости.

Общее число возможных случаев -- 36, благоприятствующих событию A -- 5. Таким образом, безусловная вероятность.

Если событие В произошло, то осуществилась одна из 18 (а не 36) возможностей и, следовательно, условная вероятность равна.

Пример 2. Из колоды карт последовательно вынуты две карты. Найти: а) безусловную вероятность того, что вторая карта окажется тузом (неизвестно, какая карта была вынута вначале), и б) условную вероятность, что вторая карта будет тузом, если первоначально был вынут туз.

Обозначим через A событие, состоящее в появлении туза на втором месте, а через В--событие, состоящее в появлении туза на первом месте. Ясно, что имеет место равенство.

В силу несовместимости событий АВ и АВ имеем:

При вынимании двух карт из колоды в 36 карт могут произойти 36*35 (учитывая порядок!) случаев. Из них благоприятствующих событию АВ -- 4*3 случаев, а событию -- 32 * 4 случаев. Таким образом,

Если первая карта есть туз, то в колоде осталось 35 карт и среди них только три туза. Следовательно, .

Общее решение задачи нахождения условной вероятности для классического определения вероятности не представляет труда. В самом деле, пусть из n единственно возможных, несовместимых и равновероятных событий событию А благоприятствует m событий. Если событие В произошло, то это означает, что наступило одно из событий, благоприятствующих В. При этом условии событию А благоприятствуют r и только r событий Aj, благоприятствующих АВ. Таким образом,

Точно так же можно вывести, что

Понятно, что

т. е. вероятность произведения двух событий равна произведению вероятности одного из этих событий на условную вероятность другого при условии, что первое произошло.

Теорема умножения применима и в том случае, когда одно из событий А или В есть невозможное событие, так как в этом случае вместе с имеют место равенства и.

Условная вероятность обладает всеми свойствами вероятности. В этом легко убедиться, проверив, что она удовлетворяет всем свойствам, сформулированных в предыдущих параграфах. Действительно, первое свойство выполняется очевидным образом, поскольку для каждого события А определена неотрицательная функция. Если, то

Проверка третьего свойства также не составляет труда и мы предоставляем читателю ее осуществление.

Заметим, что вероятностное пространство для условных вероятностей задается следующей тройкой.

Определение 1. Говорят, что событие А независимо от события В, если имеет место равенство т. е. если наступление события В не изменяет вероятности появления события А.

Если событие А независимо от В, то имеет место равенство

Отсюда находим: т. е. событие В также независимо от А. Таким образом, свойство независимости событий взаимно.

Если события А и В независимы, то независимы также события А и. Действительно, так как

Отсюда мы делаем важное заключение: если события А и В независимы, то независимы также каждые два события.

Понятие независимости событий играет значительную роль в теории вероятностей и в ее приложениях. В частности, большая часть результатов, изложенных в настоящем пособии, получена в предположении независимости тех или иных рассматриваемых событий.

Так, например, ясно, что выпадение герба на одной монете не изменяет вероятности появления герба (решки) на другой монете, если только эти монеты во время бросания не связаны между собой (например, жестко не скреплены). Точно так же рождение мальчика у одной матери не изменяет вероятности появления мальчика (девочки) у другой матери. Это -- события независимые.

Для независимых событий теорема умножения принимает особенно простой вид, а именно, если события A и В независимы, то

Мы обобщим теперь понятие независимости двух событий на совокупность нескольких событий.

Определение 2. События называются независимыми в совокупности, если для любого события из их числа и произвольных из их же числа события и взаимно независимы. В силу предыдущего это определение эквивалентно: при любых

Заметим, что для независимости в совокупности нескольких событий недостаточно их по парной независимости. В этом можно убедиться на следующем простом примере.

Пример С.Н. Бернштейна. Представим себе, что грани тетраэдра окрашены: 1-я -- в красный цвет (A), 2-я -- в зеленый (В), третья -- в синий (С) и 4-я -- во все эти три цвета (AВС). Легко видеть, что вероятность выпадения грани, на которую упадет тетраэдр при бросании, и своей окраске иметь красный цвет равна 1/2: граней четыре и две из них имеют в окраске красный цвет.

события A,В,С, таким образом, попарно независимы.

Однако, если нам известно, что осуществились события В и С, то заведомо осуществилось и событие A, т. е. .

Таким образом, события A,В,С в совокупности зависимы. Таким образом, в общем случае при по определению

(В случае условная вероятность остается неопределенной.) Это позволяет нам перенести автоматически на общее понятие вероятности все определения и результаты настоящего параграфа.

Тема: Понятие условной вероятности в примерах и задачах.


Немного статистики: более 90% студентов, пройдя полный курс теории вероятности, на экзамене не могут решить задачу на теорему умножения вероятностей, на формулу полной вероятности, формулу Байеса, не могут вычислить вероятность гипотез. Вопрос почему? После индивидуальных занятий с данными студентами выяснилось, что студенты пропустили мимо ушей такое важное понятие, как условная вероятность, и тупо пытались применять формулы при решении задач. После дополнительного занятия по теме "Условная вероятность в примерах и задачах" все студенты справились с индивидуальными заданиями.

Напомню вероятность бывает безусловной и условной. В самих названиях уже заключен смысл данных понятий: безусловная вероятность это вероятность события на которое не накладывается ни каких дополнительных условий, условная - значит имеются дополнительные условия.

Рассмотрим два примера:

Пример 1.Бросаем игральную кость, найти вероятность выпадения "6".

Пример 2.Событие то же самое, бросаем игральную кость, найти вероятность выпадения "6", если известно, что выпало четное число.

Вопрос: в каком примере условная вероятность, и в каком безусловная.

Ответ: в примере 1 - безусловная, в примере 2 - условная.

Вопрос: а в чем заключается условие?

Ответ: в том, что выпадет четное число.

Вопрос: по какой формуле будем находить вероятность в примере 1?

Ответ: по формуле классической вероятности.

Ответ: вероятность события это отношение числа благоприятных событий к числу всех возможных, если событие выпадение числа "6" обозначить через А, то запись будет выглядеть так

Вопрос: назовите число благоприятных и число всех возможных событий в первом примере?

Ответ: благоприятным будет только одно событие - это выпадение "6", значит n=1, число всех возможных событий m=6 (1,2,3,4,5,6)

Вопрос: ну и подставить в формулу надеюсь труда не составит.

Ответ:

Займемся решением второго примера, на условную вероятность.

Вопрос: по какой формуле будем находить условную вероятность.
Ответ: тоже по формуле условной вероятности, данная формула отличается от классической только с той лишь разницей, что на наше событие наложено ограничение - всех возможных событий не 6, а 3, потому что в условии сказано: выпало четное число - обозначим данное событие B, значит возможно выпадение "2", "4" или "6", отсюда m=3, число благоприятных событий не изменилось n=1, тогда условная вероятность события А при условии В равна


Условная вероятность может быть записана и так: Р(А/В)=1/3


Пример 3. Из коробки, содержащей 3 белых, 5 чёрных и 7 зеленых шаров наугад взяли 1 шар. Какова вероятность того, что шар оказался чёрного цвета, если известно, что вынутый шар не белый?

Решение по формуле условной вероятности,

или Р(А/В)=m/n


где m - число благоприятных событий, n - число всех возможных событий.
условие - шар не белого цвета, обозначим событие В.

число благоприятных событий - m=5 (черных шаров 5)
число всех возможных событий - n=12 (шар не белый, 5+7=12)
Подставляем в формулу, получаем условную вероятность вынуть черный шар

или Р(А/В)=5/12

Основной вопрос: в чем же проблема в применении понятия условной вероятности?

Ответ: в том, что формула условной вероятности внешне очень похожа на формулу классической вероятности и студенты, не вдумываясь в суть задачи, часто их путают или не понимают разницы.


Ну вот и все, что необходимо знать про условную вероятность. Более сложные задачи получаются когда данная формула комбинируется с теоремой умножения вероятностей. Также данное понятие применяется в формуле полной вероятности и формуле Байеса, но это уже тема следующих занятий.

И вопрос для самостоятельного решения: какая вероятность всегда больше условная или безусловная (если событие одно и то же)?

Формула полной вероятности позволяет найти вероятность события A , которое может наступить только с каждым из n исключающих друг друга событий , образующих полную систему, если известны их вероятности , а условные вероятности события A относительно каждого из событий системы равны .

События также называются гипотезами, они являются исключающими друг друга. Поэтому в литературе можно также встретить их обозначение не буквой B , а буквой H (hypothesis).

Для решения задач с такими условиями необходимо рассмотреть 3, 4, 5 или в общем случае n возможностей наступления события A - с каждым событий .

По теоремам сложения и умножения вероятностей получаем сумму произведений вероятности каждого из событий системы на условную вероятность события A относительно каждого из событий системы. То есть, вероятность события A может быть вычислена по формуле

или в общем виде

,

которая и называется формулой полной вероятности .

Формула полной вероятности: примеры решения задач

Пример 1. Имеются три одинаковых на вид урны: в первой 2 белых шара и 3 чёрных, во второй - 4 белых и один чёрный, в третьей - три белых шара. Некто подходит наугад к одной из урн и вынимает из неё один шар. Пользуясь формулой полной вероятности , найти вероятность того, что этот шар будет белым.

Решение. Событие A - появление белого шара. Выдвигаем три гипотезы:

Выбрана первая урна;

Выбрана вторая урна;

Выбрана третья урна.

Условные вероятности события A относительно каждой из гипотез:

, , .

Применяем формулу полной вероятности, в результате - требуемая вероятность:

.

Пример 2. На первом заводе из каждых 100 лампочек производится в среднем 90 стандартных, на втором - 95, на третьем - 85, а продукция этих заводов составляет соответственно 50%, 30% и 20% всех электролампочек, поставляемых в магазины некоторого района. Найти вероятность приобретения стандартной электролампочки.

Решение. Обозначим вероятность приобретения стандартной электролампочки через A , а события, заключающиеся в том, что приобретённая лампочка изготовлена соответственно на первом, втором и третьем заводах, через . По условию известны вероятности этих событий: , , и условные вероятности события A относительно каждого из них: , , . Это вероятности приобретения стандартной лампочки при условии её изготовления соответственно на первом, втором, третьем заводах.

Событие A наступит, если произойдут или событие K - лампочка изготовлена на первом заводе и стандартна, или событие L - лампочка изготовлена на втором заводе и стандартна, или событие M - лампочка изготовлена на третьем заводе и стандартна. Других возможностей наступления события A нет. Следовательно, событие A является суммой событий K , L и M , которые являются несовместимыми. Применяя теорему сложения вероятностей, представим вероятность события A в виде

а по теореме умножения вероятностей получим

то есть, частный случай формулы полной вероятности .

Подставив в левую часть формулы значения вероятностей, получаем вероятность события A :

Пример 3. Производится посадка самолёта на аэродром. Если позволяет погода, лётчик сажает самолёт, пользуясь, помимо приборов, ещё и визуальным наблюдением. В этом случае вероятность благополучной посадки равна . Если аэродром затянут низкой облачностью, то лётчик сажает самолёт, ориентируясь только по приборам. В этом случае вероятность благополучной посадки равна ; . Приборы, обеспечивающие слепую посадку, имеют надёжность (вероятность безотказной работы) P . При наличии низкой облачности и отказавших приборах слепой посадки вероятность благополучной посадки равна ; . Статистика показывает, что в k % случаев посадки аэродром затянут низкой облачностью. Найти полную вероятность события A - благополучной посадки самолёта.

Решение. Гипотезы:

Низкой облачности нет;

Низкая облачность есть.

Вероятности этих гипотез (событий):

;

Условная вероятность .

Условную вероятность снова найдём по формуле полной вероятности с гипотезами

Приборы слепой посадки действуют;

Приборы слепой посадки отказали.

Вероятности этих гипотез:

По формуле полной вероятности

Пример 4. Прибор может работать в двух режимах: нормальном и ненормальном. Нормальный режим наблюдается в 80% всех случаев работы прибора, а ненормальный - в 20% случаев. Вероятность выхода прибора из строя за определённое время t равна 0,1; в ненормальном 0,7. Найти полную вероятность выхода прибора из строя за время t .

Решение. Вновь обозначаем вероятность выхода прибора из строя через A . Итак, относительно работы прибора в каждом режиме (события ) по условию известны вероятности: для нормального режима это 80% (), для ненормального - 20% (). Вероятность события A (то есть, выхода прибора из строя) в зависимости от первого события (нормального режима) равна 0,1 (); в зависимости от второго события (ненормального режима) - 0,7 (). Подставляем эти значения в формулу полной вероятности (то есть, сумму произведений вероятности каждого из событий системы на условную вероятность события A относительно каждого из событий системы) и перед нами - требуемый результат.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама